|
--- |
|
language: |
|
- nl |
|
license: mit |
|
tags: |
|
- trl |
|
- fietje |
|
- alignment-handbook |
|
- dpo |
|
base_model: BramVanroy/fietje-2-instruct |
|
datasets: |
|
- BramVanroy/ultra_feedback_dutch_cleaned |
|
- BramVanroy/orca_dpo_pairs_dutch_cleaned |
|
pipeline_tag: text-generation |
|
inference: false |
|
model-index: |
|
- name: fietje-2-chat |
|
results: [] |
|
--- |
|
|
|
<p align="center" style="margin:0;padding:0"> |
|
<img src="https://huggingface.co/BramVanroy/fietje-2-chat/resolve/main/img/fietje-2b-banner-rounded.png" alt="Fietje banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
<div style="margin:auto; text-align:center"> |
|
<h1 style="margin-bottom: 0">Fietje 2 Chat</h1> |
|
<em>An open and efficient LLM for Dutch</em> |
|
</div> |
|
|
|
<blockquote class="tip" style="padding: 1.5em; border: 0"> |
|
<p align="center" style="text-align: center; margin: 0"> |
|
<a href="https://huggingface.co/BramVanroy/fietje-2">π±ββοΈ Base version</a> - |
|
<a href="https://huggingface.co/BramVanroy/fietje-2-instruct">π€ Instruct version</a> - |
|
<a href="https://huggingface.co/BramVanroy/fietje-2-chat">π¬ Chat version</a> (this one) - |
|
<a href="https://huggingface.co/BramVanroy/fietje-2-chat-GGUF">π GGUF of Chat</a> |
|
</p> |
|
<p align="center" style="text-align: center; margin: 0"> |
|
<a href="https://huggingface.co/spaces/BramVanroy/fietje-2b"><strong>Chat with Fietje here!</strong></a> |
|
</p> |
|
</blockquote> |
|
|
|
This is the chat version of Fietje, a DPO-tuned (aligned) continuation on [the instruct version](https://huggingface.co/BramVanroy/fietje-2-instruct). Fietje is an adapated version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2), tailored to Dutch text generation by training on 28B tokens. It is small and efficient with a size of 2.7 billion parameters while performing almost on par with more powerful Dutch LLMs of twice its size like [GEITje 7B Ultra](https://huggingface.co/BramVanroy/GEITje-7B-ultra). |
|
|
|
A thorough description of the creation and evaluation of Fietje as well as usage examples are available in [this Github repository](https://github.com/BramVanroy/fietje). |
|
|
|
## Citation |
|
|
|
If you use Fietje or the [CulturaX + Wikipedia filtered subset](https://huggingface.co/datasets/BramVanroy/wikipedia_culturax_dutch) in your work, please cite to the following paper: |
|
|
|
```bibtex |
|
@misc{vanroy2024fietjeopenefficientllm, |
|
title={Fietje: An open, efficient LLM for Dutch}, |
|
author={Bram Vanroy}, |
|
year={2024}, |
|
eprint={2412.15450}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2412.15450}, |
|
} |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
The same limitations as [phi-2](https://huggingface.co/microsoft/phi-2#limitations-of-phi-2), and LLMs in general, apply here. LLMs hallucinate, make mistakes, and should not be trusted. Use at your own risk! |
|
|
|
## Training and evaluation data |
|
|
|
Fietje 2 Chat was finetuned from [the instruct model](https://huggingface.co/BramVanroy/fietje-2-instruct) on the following datasets. Number of training samples per dataset given in brackets, totalling 18,653 samples. |
|
|
|
- [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) subset `dpo_hq`: a cleaned version of [BramVanroy/ultra_feedback_dutch](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch) (9186) |
|
- [BramVanroy/orca_dpo_pairs_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/orca_dpo_pairs_dutch_cleaned) subset `dpo_all`: a cleaned version of [BramVanroy/orca_dpo_pairs_dutch](https://huggingface.co/datasets/BramVanroy/orca_dpo_pairs_dutch) (9467) |
|
|
|
A lot of different learning rates, beta, en batch sizes were investigated in search of a converging combination. You can find them all in [the W&B runs](https://wandb.ai/bramvanroy/dpo-fietje-2b). |
|
|
|
## Training procedure |
|
|
|
I am thankful to the [Flemish Supercomputer Center](https://www.vscentrum.be/) (VSC) for providing the computational power to accomplish this project. Accounting for waiting for jobs, training a single run took around nine hours on one A100 80GB. |
|
|
|
Training was done with the wonderful [alignment-handbook](https://github.com/huggingface/alignment-handbook), using DeepSpeed as a back-end. Exact training recipes and SLURM script are given in the [Github repository](https://github.com/BramVanroy/fietje). |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- beta: 0.2 |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.2515 | 1.0 | 1166 | 0.2842 | -1.1549 | -3.6363 | 0.8867 | 2.4815 | -657.6813 | -451.3364 | -1.2868 | -1.3528 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|