Broomva's picture
Update README.md
1225a96
metadata
license: apache-2.0
base_model: google/mt5-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - accuracy
model-index:
  - name: mt5-base-translation-spa-pbb
    results: []
datasets:
  - Broomva/translation_pbb_spa
language:
  - es

mt5-base-translation-spa-pbb

This model is a fine-tuned version of google/mt5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0646
  • Bleu: 0.5194
  • Gen Len: 5.3808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
9.0597 1.0 304 7.8135 0.0148 4.6469
6.2294 2.0 608 4.9617 0.0 3.9209
4.8326 3.0 912 4.0494 0.0 4.3808
4.582 4.0 1216 3.7069 0.0 5.3979
5.4762 5.0 1520 3.5463 0.0 5.6759
4.3875 6.0 1824 3.4731 0.0 5.6258
4.2873 7.0 2128 3.3832 0.0 5.5455
4.1326 8.0 2432 3.3424 0.0 5.4756
3.5728 9.0 2736 3.2956 0.0 5.1792
3.1873 10.0 3040 3.2690 0.0 5.5903
2.9436 11.0 3344 3.2465 0.1237 5.7655
4.2955 12.0 3648 3.2054 0.1741 5.4466
3.8722 13.0 3952 3.1764 0.1887 5.2161
3.5391 14.0 4256 3.1688 0.0951 5.7312
3.8012 15.0 4560 3.1480 0.1948 5.2964
3.1148 16.0 4864 3.1401 0.2397 5.7589
3.2699 17.0 5168 3.1186 0.33 5.386
4.3355 18.0 5472 3.1092 0.4637 5.1383
3.5792 19.0 5776 3.0966 0.3286 5.4374
3.1429 20.0 6080 3.0923 0.418 5.2964
3.4155 21.0 6384 3.0900 0.3938 5.4848
3.4515 22.0 6688 3.0755 0.4062 5.4124
2.8244 23.0 6992 3.0717 0.4218 5.3663
2.9253 24.0 7296 3.0663 0.3633 5.5692
2.1757 25.0 7600 3.0640 0.4768 5.4282
2.9356 26.0 7904 3.0646 0.5194 5.3808

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0