BruBel's picture
End of training
90ec7ee verified
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: >-
      A Poro situated in a red sky, war scenario. The Poro wears a brown cape.
      Region of Shurima. In <s0><s1> style.
    output:
      url: image_0.png
  - text: >-
      A Poro situated in a red sky, war scenario. The Poro wears a brown cape.
      Region of Shurima. In <s0><s1> style.
    output:
      url: image_1.png
  - text: >-
      A Poro situated in a red sky, war scenario. The Poro wears a brown cape.
      Region of Shurima. In <s0><s1> style.
    output:
      url: image_2.png
  - text: >-
      A Poro situated in a red sky, war scenario. The Poro wears a brown cape.
      Region of Shurima. In <s0><s1> style.
    output:
      url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: In <s0><s1> style.
license: openrail++

SDXL LoRA DreamBooth - BruBel/lor-style-training-v6

Prompt
A Poro situated in a red sky, war scenario. The Poro wears a brown cape. Region of Shurima. In <s0><s1> style.
Prompt
A Poro situated in a red sky, war scenario. The Poro wears a brown cape. Region of Shurima. In <s0><s1> style.
Prompt
A Poro situated in a red sky, war scenario. The Poro wears a brown cape. Region of Shurima. In <s0><s1> style.
Prompt
A Poro situated in a red sky, war scenario. The Poro wears a brown cape. Region of Shurima. In <s0><s1> style.

Model description

These are BruBel/lor-style-training-v6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BruBel/lor-style-training-v6', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='BruBel/lor-style-training-v6', filename='lor-style-training-v6_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A Poro situated in a red sky, war scenario. The Poro wears a brown cape. Region of Shurima. In <s0><s1> style.').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept LEGENDSOFRUNETERRA → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.