BusRune's picture
Upload README.md with huggingface_hub
c1f4b2a verified
metadata
datasets:
  - vicgalle/worldsim-claude-opus
  - macadeliccc/opus_samantha
  - anthracite-org/kalo-opus-instruct-22k-no-refusal
  - lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT
  - lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K
  - QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT
  - ChaoticNeutrals/Luminous_Opus
  - kalomaze/Opus_Instruct_3k
  - kalomaze/Opus_Instruct_25k
language:
  - en
base_model: BusRune/L3.1-8B-Fabula
pipeline_tag: text-generation
license: llama3.1
tags:
  - llama-cpp
  - gguf-my-repo

BusRune/L3.1-8B-Fabula-Q8_0-GGUF

This model was converted to GGUF format from BusRune/L3.1-8B-Fabula using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo BusRune/L3.1-8B-Fabula-Q8_0-GGUF --hf-file l3.1-8b-fabula-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo BusRune/L3.1-8B-Fabula-Q8_0-GGUF --hf-file l3.1-8b-fabula-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo BusRune/L3.1-8B-Fabula-Q8_0-GGUF --hf-file l3.1-8b-fabula-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo BusRune/L3.1-8B-Fabula-Q8_0-GGUF --hf-file l3.1-8b-fabula-q8_0.gguf -c 2048