language:
- en pipeline_tag: text-generation tags:
- meta
- pytorch
- llama
- llama-3 license: llama3
license: cc-by-sa-4.0 metrics: - accuracy pipeline_tag: text-generation tags: - code
Model Description
Developed by: Defog, Inc Model type: [Text to SQL] License: [CC-by-SA-4.0] Finetuned from model: [Meta-Llama-3-8B-Instruct]
defog/llama-3-sqlcoder-8b for CTranslate2
The model is quantized version of the meta-llama/Meta-Llama-3-8B-Instruct with int8_float16 quantization and can be used in CTranslate2.
How to use
pip install ctranslate2
This repository for use with CTranslate2.
Use with CTranslate2
This example code is obtained from CTranslate2_transformers and tokenizer AutoTokenizer.
More detailed information about the generate_batch
methon can be found at CTranslate2_Generator.generate_batch.
import ctranslate2
import transformers
from huggingface_hub import snapshot_download
model_id = "ByteForge/Defog_llama-3-sqlcoder-8b-ct2-int8_float16"
model_path = snapshot_download(model_id)
model = ctranslate2.Generator(model_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
prompt="""
CREATE TABLE stadium (
stadium_id number,
location text,
name text,
capacity number,
highest number,
lowest number,
average number
)
CREATE TABLE singer (
singer_id number,
name text,
country text,
song_name text,
song_release_year text,
age number,
is_male others
)
CREATE TABLE concert (
concert_id number,
concert_name text,
theme text,
stadium_id text,
year text
)
CREATE TABLE singer_in_concert (
concert_id number,
singer_id text
)
-- Using valid SQLite, answer the following questions for the tables provided above.
-- What is the maximum, the average, and the minimum capacity of stadiums ? (Generate 1 Sql query. No explaination needed)
answer:
"""
messages = [
{"role": "system", "content": "You are SQL Expert. Given a input question and schema, answer with correct sql query"},
{"role": "user", "content": prompt},
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_ids))
results = model.generate_batch([input_tokens], include_prompt_in_result=False, max_length=256, sampling_temperature=0.6, sampling_topp=0.9, end_token=terminators)
output = tokenizer.decode(results[0].sequences_ids[0])
print(output)
Ideal prompt and inference parameters
Set temperature to 0, and do not do sampling.
- Downloads last month
- 8