license: mit
base_model: camembert/camembert-large
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NERmembert-large-4entities
results: []
datasets:
- CATIE-AQ/frenchNER_4entities
language:
- fr
widget:
- text: >-
Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au
14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le
nécessaire pour avoir des certitudes. Avec six victoires en six matchs
officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis
de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian
Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore
Mike Maignan.
library_name: transformers
pipeline_tag: token-classification
co2_eq_emissions: 80
NERmembert-large-4entities
Model Description
We present NERmembert-large-4entities, which is a CamemBERT large fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
All these datasets were concatenated and cleaned into a single dataset that we called frenchNER_4entities.
There are a total of 384,773 rows, of which 328,757 are for training, 24,131 for validation and 31,885 for testing.
Our methodology is described in a blog post available in English or French.
Dataset
The dataset used is frenchNER_4entities, which represents ~385k sentences labeled in 4 categories:
Label | Examples |
---|---|
PER | "La Bruyère", "Gaspard de Coligny", "Wittgenstein" |
ORG | "UTBM", "American Airlines", "id Software" |
LOC | "République du Cap-Vert", "Créteil", "Bordeaux" |
MISC | "Wolfenstein 3D", "Révolution française", "Coupe du monde" |
The distribution of the entities is as follows:
Splits |
O |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|---|
train |
7,539,692 |
307,144 |
286,746 |
127,089 |
799,494 |
validation |
544,580 |
24,034 |
21,585 |
5,927 |
18,221 |
test |
720,623 |
32,870 |
29,683 |
7,911 |
21,760 |
Evaluation results
The evaluation was carried out using the evaluate python package.
frenchNER_4entities
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner |
0.971 |
0.947 |
0.902 |
0.663 |
cmarkea/distilcamembert-base-ner |
0.974 |
0.948 |
0.892 |
0.658 |
NERmembert-base-3entities |
0.978 |
0.957 |
0.904 |
0 |
NERmembert-base-4entities |
0.978 |
0.958 |
0.903 |
0.814 |
NERmembert-large-4entities (this model) |
0.982 |
0.964 |
0.919 |
0.834 |
Full results
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner |
Precision |
0.952 |
0.924 |
0.870 |
0.845 |
0.986 |
0.976 |
Recall |
0.990 |
0.972 |
0.938 |
0.546 |
0.992 |
0.976 |
|
F1 | 0.971 |
0.947 |
0.902 |
0.663 |
0.989 |
0.976 |
|
cmarkea/distilcamembert-base-ner |
Precision |
0.962 |
0.933 |
0.857 |
0.830 |
0.985 |
0.976 |
Recall |
0.987 |
0.963 |
0.930 |
0.545 |
0.993 |
0.976 |
|
F1 | 0.974 |
0.948 |
0.892 |
0.658 |
0.989 |
0.976 |
|
NERmembert-base-3entities |
Precision |
0.973 |
0.955 |
0.886 |
0 |
X |
X |
Recall |
0.983 |
0.960 |
0.923 |
0 |
X |
X |
|
F1 | 0.978 |
0.957 |
0.904 |
0 |
X |
X |
|
NERmembert-base-4entities |
Precision |
0.973 |
0.951 |
0.888 |
0.850 |
0.993 |
0.984 |
Recall |
0.983 |
0.964 |
0.918 |
0.781 |
0.993 |
0.984 |
|
F1 | 0.978 |
0.958 |
0.903 |
0.814 |
0.993 |
0.984 |
|
NERmembert-large-4entities (this model) |
Precision |
0.977 |
0.961 |
0.896 |
0.872 |
0.993 |
0.986 |
Recall |
0.987 |
0.966 |
0.943 |
0.798 |
0.995 |
0.986 |
|
F1 | 0.982 |
0.964 |
0.919 |
0.834 |
0.994 |
0.986 |
In detail:
multiconer
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner |
0.940 |
0.761 |
0.723 |
0.560 |
cmarkea/distilcamembert-base-ner |
0.921 |
0.748 |
0.694 |
0.530 |
NERmembert-base-3entities |
0.960 |
0.887 |
0.877 |
0 |
NERmembert-base-4entities |
0.960 |
0.890 |
0.867 |
0.852 |
NERmembert-large-4entities (this model) |
0.969 |
0.919 |
0.904 |
0.864 |
Full results
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner |
Precision |
0.908 |
0.717 |
0.753 |
0.620 |
0.936 |
0.889 |
Recall |
0.975 |
0.811 |
0.696 |
0.511 |
0.938 |
0.889 |
|
F1 | 0.940 |
0.761 |
0.723 |
0.560 |
0.937 |
0.889 |
|
cmarkea/distilcamembert-base-ner |
Precision |
0.885 |
0.738 |
0.737 |
0.589 |
0.928 |
0.881 |
Recall |
0.960 |
0.759 |
0.655 |
0.482 |
0.939 |
0.881 |
|
F1 | 0.921 |
0.748 |
0.694 |
0.530 |
0.934 |
0.881 |
|
NERmembert-base-3entities |
Precision |
0.957 |
0.894 |
0.876 |
0 |
X |
X |
Recall |
0.962 |
0.880 |
0.878 |
0 |
X |
X |
|
F1 | 0.960 |
0.887 |
0.877 |
0 |
X |
X |
|
NERmembert-base-4entities |
Precision |
0.954 |
0.893 |
0.851 |
0.849 |
0.979 |
0.954 |
Recall |
0.967 |
0.887 |
0.883 |
0.855 |
0.974 |
0.954 |
|
F1 | 0.960 |
0.890 |
0.867 |
0.852 |
0.977 |
0.954 |
|
NERmembert-large-4entities (this model) |
Precision |
0.964 |
0.922 |
0.904 |
0.856 |
0.981 |
0.961 |
Recall |
0.975 |
0.917 |
0.904 |
0.872 |
0.976 |
0.961 |
|
F1 | 0.969 |
0.919 |
0.904 |
0.864 |
0.978 |
0.961 |
multinerd
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner |
0.962 |
0.934 |
0.888 |
0.419 |
cmarkea/distilcamembert-base-ner |
0.972 |
0.938 |
0.884 |
0.430 |
NERmembert-base-3entities |
0.985 |
0.973 |
0.938 |
0 |
NERmembert-base-4entities |
0.985 |
0.973 |
0.938 |
0.770 |
NERmembert-large-4entities (this model) |
0.987 |
0.976 |
0.948 |
0.790 |
Full results
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner |
Precision |
0.931 |
0.893 |
0.827 |
0.725 |
0.979 |
0.966 |
Recall |
0.994 |
0.980 |
0.959 |
0.295 |
0.990 |
0.966 |
|
F1 | 0.962 |
0.934 |
0.888 |
0.419 |
0.984 |
0.966 |
|
cmarkea/distilcamembert-base-ner |
Precision |
0.954 |
0.908 |
0.817 |
0.705 |
0.977 |
0.967 |
Recall |
0.991 |
0.969 |
0.963 |
0.310 |
0.990 |
0.967 |
|
F1 | 0.972 |
0.938 |
0.884 |
0.430 |
0.984 |
0.967 |
|
NERmembert-base-3entities |
Precision |
0.974 |
0.965 |
0.910 |
0 |
X |
X |
Recall |
0.995 |
0.981 |
0.968 |
0 |
X |
X |
|
F1 | 0.985 |
0.973 |
0.938 |
0 |
X |
X |
|
NERmembert-base-4entities |
Precision |
0.976 |
0.961 |
0.91 |
0.829 |
0.991 |
0.983 |
Recall |
0.994 |
0.985 |
0.967 |
0.719 |
0.993 |
0.983 |
|
F1 | 0.985 |
0.973 |
0.938 |
0.770 |
0.992 |
0.983 |
|
NERmembert-large-4entities (this model) |
Precision |
0.979 |
0.967 |
0.922 |
0.852 |
0.991 |
0.985 |
Recall |
0.996 |
0.986 |
0.974 |
0.736 |
0.994 |
0.985 |
|
F1 | 0.987 |
0.976 |
0.948 |
0.790 |
0.993 |
0.985 |
wikiner
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner |
0.986 |
0.966 |
0.938 |
0.938 |
cmarkea/distilcamembert-base-ner |
0.983 |
0.964 |
0.925 |
0.926 |
NERmembert-base-3entities |
0.970 |
0.945 |
0.878 |
0 |
NERmembert-base-4entities |
0.970 |
0.945 |
0.876 |
0.872 |
NERmembert-large-4entities (this model) |
0.975 |
0.953 |
0.896 |
0.893 |
Full results
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner |
Precision |
0.986 |
0.962 |
0.925 |
0.943 |
0.998 |
0.992 |
Recall |
0.987 |
0.969 |
0.951 |
0.933 |
0.997 |
0.992 |
|
F1 | 0.986 |
0.966 |
0.938 |
0.938 |
0.998 |
0.992 |
|
cmarkea/distilcamembert-base-ner |
Precision |
0.982 |
0.964 |
0.910 |
0.942 |
0.997 |
0.991 |
Recall |
0.985 |
0.963 |
0.940 |
0.910 |
0.998 |
0.991 |
|
F1 | 0.983 |
0.964 |
0.925 |
0.926 |
0.997 |
0.991 |
|
NERmembert-base-3entities |
Precision |
0.971 |
0.947 |
0.866 |
0 |
X |
X |
Recall |
0.969 |
0.943 |
0.891 |
0 |
X |
X |
|
F1 | 0.970 |
0.945 |
0.878 |
0 |
X |
X |
|
NERmembert-base-4entities |
Precision |
0.970 |
0.944 |
0.872 |
0.878 |
0.996 |
0.986 |
Recall |
0.969 |
0.947 |
0.880 |
0.866 |
0.996 |
0.986 |
|
F1 | 0.970 |
0.945 |
0.876 |
0.872 |
0.996 |
0.986 |
|
NERmembert-large-4entities (this model) |
Precision |
0.975 |
0.957 |
0.872 |
0.901 |
0.997 |
0.989 |
Recall |
0.975 |
0.949 |
0.922 |
0.884 |
0.997 |
0.989 |
|
F1 | 0.975 |
0.953 |
0.896 |
0.893 |
0.997 |
0.989 |
Usage
Code
from transformers import pipeline
ner = pipeline('token-classification', model='CATIE-AQ/NERmembert-large-4entities', tokenizer='CATIE-AQ/NERmembert-large-4entities', aggregation_strategy="simple")
results = ner(
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
)
print(result)
Try it through Space
A Space has been created to test the model. It is available here.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0347 | 1.0 | 41095 | 0.0537 | 0.9832 | 0.9832 | 0.9832 | 0.9832 |
0.0237 | 2.0 | 82190 | 0.0448 | 0.9858 | 0.9858 | 0.9858 | 0.9858 |
0.0119 | 3.0 | 123285 | 0.0532 | 0.9860 | 0.9860 | 0.9860 | 0.9860 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0
Environmental Impact
Carbon emissions were estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- Hardware Type: A100 PCIe 40/80GB
- Hours used: 4h17min
- Cloud Provider: Private Infrastructure
- Carbon Efficiency (kg/kWh): 0.078 (estimated from electricitymaps for the day of January 10, 2024.)
- Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid): 0.08 kg eq. CO2
Citations
NERmembert-large-4entities
TODO
multiconer
@inproceedings{multiconer2-report,
title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
year={2023},
publisher={Association for Computational Linguistics}}
@article{multiconer2-data,
title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
year={2023}}
multinerd
@inproceedings{tedeschi-navigli-2022-multinerd,
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
author = "Tedeschi, Simone and Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.60",
doi = "10.18653/v1/2022.findings-naacl.60",
pages = "801--812"}
pii-masking-200k
@misc {ai4privacy_2023,
author = { {ai4Privacy} },
title = { pii-masking-200k (Revision 1d4c0a1) },
year = 2023,
url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k },
doi = { 10.57967/hf/1532 },
publisher = { Hugging Face }}
wikiner
@article{NOTHMAN2013151,
title = {Learning multilingual named entity recognition from Wikipedia},
journal = {Artificial Intelligence},
volume = {194},
pages = {151-175},
year = {2013},
note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
issn = {0004-3702},
doi = {https://doi.org/10.1016/j.artint.2012.03.006},
url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
frenchNER_4entities
TODO
CamemBERT
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {'E}ric Villemonte and Seddah, Djam{'e} and Sagot, Beno{^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}}