import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from safetensors.torch import load_file
def evaluate(test_data):
tokenizer = BertTokenizer.from_pretrained("CIS5190-PROJ/BERTv3")
model = BertForSequenceClassification.from_pretrained("CIS5190-PROJ/BERTv3")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
test_texts = test_data['title'].tolist()
test_encodings = tokenizer(test_texts, truncation=True, padding="max_length", max_length=64)
test_encodings = {key: torch.tensor(val).to(device) for key, val in test_encodings.items()}
with torch.no_grad():
outputs = model(**test_encodings)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1).cpu().numpy()
return 1- predictions
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.