import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from safetensors.torch import load_file

def evaluate(test_data):

  tokenizer = BertTokenizer.from_pretrained("CIS5190-PROJ/BERTv3") 
  model = BertForSequenceClassification.from_pretrained("CIS5190-PROJ/BERTv3")

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  model.to(device)
  model.eval()


  test_texts = test_data['title'].tolist()  
  test_encodings = tokenizer(test_texts, truncation=True, padding="max_length", max_length=64)
  test_encodings = {key: torch.tensor(val).to(device) for key, val in test_encodings.items()}
  with torch.no_grad():
      outputs = model(**test_encodings)
      logits = outputs.logits
      predictions = torch.argmax(logits, dim=1).cpu().numpy()
  return 1- predictions
Downloads last month
1
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.