Codestral-22B-v0.1 - SOTA GGUF
- Model creator: Mistral AI
- Original model: Codestral-22B-v0.1
Description
This repo contains State Of The Art quantized GGUF format model files for Codestral-22B-v0.1.
Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the CodeFeedback-Filtered-Instruction dataset.
The embedded chat template has been extended to support function calling via OpenAI-compatible tools
parameter and Fill-in-Middle token metadata has been added, see example. NOTE: Mistral's FIM requires support for SPM infill mode!
Prompt template: Mistral v3
[AVAILABLE_TOOLS] [{"name": "function_name", "description": "Description", "parameters": {...}}, ...][/AVAILABLE_TOOLS][INST] {prompt}[/INST]
Compatibility
These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit 0becb22
They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.
Explanation of quantisation methods
Click to see details
The new methods available are:
- GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
- GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
- GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
- GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
- GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
- GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
- GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
- GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
- GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
- GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
- GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
- GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
Codestral-22B-v0.1.IQ1_S.gguf | IQ1_S | 1 | 4.3 GB | 5.3 GB | smallest, significant quality loss - TBD: Waiting for this issue to be resolved |
Codestral-22B-v0.1.IQ1_M.gguf | IQ1_M | 1 | 4.8 GB | 5.8 GB | very small, significant quality loss |
Codestral-22B-v0.1.IQ2_XXS.gguf | IQ2_XXS | 2 | 5.4 GB | 6.4 GB | very small, high quality loss |
Codestral-22B-v0.1.IQ2_XS.gguf | IQ2_XS | 2 | 6.0 GB | 7.0 GB | very small, high quality loss |
Codestral-22B-v0.1.IQ2_S.gguf | IQ2_S | 2 | 6.4 GB | 7.4 GB | small, substantial quality loss |
Codestral-22B-v0.1.IQ2_M.gguf | IQ2_M | 2 | 6.9 GB | 7.9 GB | small, greater quality loss |
Codestral-22B-v0.1.IQ3_XXS.gguf | IQ3_XXS | 3 | 7.9 GB | 8.9 GB | very small, high quality loss |
Codestral-22B-v0.1.IQ3_XS.gguf | IQ3_XS | 3 | 8.4 GB | 9.4 GB | small, substantial quality loss |
Codestral-22B-v0.1.IQ3_S.gguf | IQ3_S | 3 | 8.9 GB | 9.9 GB | small, greater quality loss |
Codestral-22B-v0.1.IQ3_M.gguf | IQ3_M | 3 | 9.2 GB | 10.2 GB | medium, balanced quality - recommended |
Codestral-22B-v0.1.IQ4_XS.gguf | IQ4_XS | 4 | 11.5 GB | 12.5 GB | small, substantial quality loss |
Generated importance matrix file: Codestral-22B-v0.1.imatrix.dat
Note: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
Example llama.cpp
command
Make sure you are using llama.cpp
from commit 0becb22 or later.
./main -ngl 57 -m Codestral-22B-v0.1.IQ4_XS.gguf --color -c 32768 --temp 0 --repeat-penalty 1.1 -p "[AVAILABLE_TOOLS] {tools}[/AVAILABLE_TOOLS][INST] {prompt}[/INST]"
Change -ngl 57
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change -c 32768
to the desired sequence length.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
If you are low on V/RAM try quantizing the K-cache with -ctk q8_0
or even -ctk q4_0
for big memory savings (depending on context size).
There is a similar option for V-cache (-ctv
), however that is not working yet.
For other parameters and how to use them, please refer to the llama.cpp documentation
How to run from Python code
You can use GGUF models from Python using the llama-cpp-python module.
How to load this model in Python code, using llama-cpp-python
For full documentation, please see: llama-cpp-python docs.
First install the package
Run one of the following commands, according to your system:
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DLLAMA_VULKAN=on" pip install llama-cpp-python
# Or with Kompute acceleration
CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_CUDA=on"
pip install llama-cpp-python
Simple llama-cpp-python example code
from llama_cpp import Llama
# Chat Completion API
llm = Llama(model_path="./Codestral-22B-v0.1.IQ4_XS.gguf", n_gpu_layers=57, n_ctx=32768)
print(llm.create_chat_completion(
repeat_penalty = 1.1,
messages = [
{
"role": "user",
"content": "Pick a LeetCode challenge and solve it in Python."
}
]
))
Simple llama-cpp-python example fill-in-middle code
from llama_cpp import Llama
# Completion API
prompt = "def add("
suffix = "\n return sum\n\n"
llm = Llama(model_path="./Codestral-22B-v0.1.IQ4_XS.gguf", n_gpu_layers=57, n_ctx=32768, spm_infill=True)
output = llm.create_completion(
temperature = 0.0,
repeat_penalty = 1.0,
prompt = prompt,
suffix = suffix
)
# Models sometimes repeat suffix in response, attempt to filter that
response = output["choices"][0]["text"]
response_stripped = response.rstrip()
unwanted_response_suffix = suffix.rstrip()
unwanted_response_length = len(unwanted_response_suffix)
filtered = False
if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
response = response_stripped[:-unwanted_response_length]
filtered = True
print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[0m{suffix}")
Simple llama-cpp-python example function calling code
from llama_cpp import Llama
# Chat Completion API
llm = Llama(model_path="./Codestral-22B-v0.1.IQ4_XS.gguf", n_gpu_layers=57, n_ctx=32768)
print(llm.create_chat_completion(
temperature = 0.0,
repeat_penalty = 1.1,
messages = [
{
"role": "user",
"content": "In a physics experiment, you are given an object with a mass of 50 kilograms and a volume of 10 cubic meters. Can you use the 'calculate_density' function to determine the density of this object?"
},
{ # The tool_calls is from the response to the above with tool_choice active
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": "call__0_calculate_density_cmpl-...",
"type": "function",
"function": {
"name": "calculate_density",
"arguments": '{"mass": "50", "volume": "10"}'
}
}
]
},
{ # The tool_call_id is from tool_calls and content is the result from the function call you made
"role": "tool",
"content": "5.0",
"tool_call_id": "call__0_calculate_density_cmpl-..."
}
],
tools=[{
"type": "function",
"function": {
"name": "calculate_density",
"description": "Calculates the density of an object.",
"parameters": {
"type": "object",
"properties": {
"mass": {
"type": "integer",
"description": "The mass of the object."
},
"volume": {
"type": "integer",
"description": "The volume of the object."
}
},
"required": [ "mass", "volume" ]
}
}
}],
#tool_choice={
# "type": "function",
# "function": {
# "name": "calculate_density"
# }
#}
))
Model Card for Codestral-22B-v0.1
Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the Blogpost). The model can be queried:
- As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications
- As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code)
Installation
It is recommended to use mistralai/Codestral-22B-v0.1
with mistral-inference.
pip install mistral_inference
Download
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
Chat
After installing mistral_inference
, a mistral-chat
CLI command should be available in your environment.
mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256
Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines:
Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.
fn fibonacci(n: u32) -> u32 {
match n {
0 => 0,
1 => 1,
_ => fibonacci(n - 1) + fibonacci(n - 2),
}
}
fn main() {
let n = 10;
println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
}
This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.
Fill-in-the-middle (FIM)
After installing mistral_inference
and running pip install --upgrade mistral_common
to make sure to have mistral_common>=1.2 installed:
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.request import FIMRequest
tokenizer = MistralTokenizer.v3()
model = Transformer.from_folder("~/codestral-22B-240529")
prefix = """def add("""
suffix = """ return sum"""
request = FIMRequest(prompt=prefix, suffix=suffix)
tokens = tokenizer.encode_fim(request).tokens
out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])
middle = result.split(suffix)[0].strip()
print(middle)
Should give something along the following lines:
num1, num2):
# Add two numbers
sum = num1 + num2
# return the sum
Limitations
The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
License
Codestral-22B-v0.1 is released under the MNLP-0.1
license.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
- Downloads last month
- 157
Model tree for CISCai/Codestral-22B-v0.1-SOTA-GGUF
Base model
mistralai/Codestral-22B-v0.1