|
--- |
|
license: apache-2.0 |
|
tags: |
|
- simplification |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-clara-med |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-clara-med |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3080 |
|
- Rouge1: 30.493 |
|
- Rouge2: 15.6893 |
|
- Rougel: 26.8862 |
|
- Rougelsum: 26.912 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 1.0 | 190 | 3.2218 | 18.2868 | 7.2715 | 16.1223 | 16.4758 | |
|
| No log | 2.0 | 380 | 2.5984 | 22.723 | 11.054 | 20.6104 | 20.5809 | |
|
| 7.1737 | 3.0 | 570 | 2.4510 | 29.0855 | 14.5467 | 25.516 | 25.5461 | |
|
| 7.1737 | 4.0 | 760 | 2.3834 | 29.5966 | 14.9256 | 26.0424 | 26.0825 | |
|
| 3.3012 | 5.0 | 950 | 2.3490 | 30.0213 | 15.2307 | 26.3306 | 26.3528 | |
|
| 3.3012 | 6.0 | 1140 | 2.3250 | 30.1084 | 15.1684 | 26.4745 | 26.4574 | |
|
| 3.3012 | 7.0 | 1330 | 2.3139 | 30.5785 | 15.7414 | 26.9835 | 27.0047 | |
|
| 3.0426 | 8.0 | 1520 | 2.3080 | 30.493 | 15.6893 | 26.8862 | 26.912 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.12.1 |
|
|