Model Card for Model ID

This is the MCQ confidence prediction model that outputs a certainty score given a math question and a full step-by-step rationale that attempts to solve the question.

Model Details

Model Description

  • Developed by: Shiyao Li
  • Finetuned from model : meta-llama/Meta-Llama-3.1-8B

Model Example Usage

from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

model_name_or_path = 'CarelessLee/MCQ_pooled_full_rationale_confidence_predictor'
model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

def predict(text):
    model.eval()
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    logits = outputs.logits
    certainty_score = logits.item()
    return certainty_score

def evaluate_predictor(label_data):
    for sample in tqdm(label_data, desc="Processing questions"):
        highest_score = -1
        best_rationale = ""
        for rationale in sample['rationales']:
            text = f"Problem: {sample['question']}\n---\nRationale Step: {rationale}"
            predicted_certainty_score = predict(text)
            print("predicted_certainty_score: ", predicted_certainty_score)

if __name__ == "__main__":
    with open("example.json", 'r') as f:
        label_data = json.load(f)
    
    evaluate_predictor(label_data)
Downloads last month
6
Safetensors
Model size
7.5B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.