metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base_LeNER-Br
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
args: lener_br
metrics:
- name: Precision
type: precision
value: 0.8295165394402035
- name: Recall
type: recall
value: 0.8965896589658966
- name: F1
type: f1
value: 0.8617499339148824
- name: Accuracy
type: accuracy
value: 0.9714166181062949
xlm-roberta-base_LeNER-Br
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8295
- Recall: 0.8966
- F1: 0.8617
- Accuracy: 0.9714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2394 | 1.0 | 979 | nan | 0.7134 | 0.8614 | 0.7805 | 0.9638 |
0.0375 | 2.0 | 1958 | nan | 0.8035 | 0.9043 | 0.8509 | 0.9670 |
0.0256 | 3.0 | 2937 | nan | 0.8026 | 0.8878 | 0.8430 | 0.9761 |
0.0194 | 4.0 | 3916 | nan | 0.7836 | 0.8861 | 0.8317 | 0.9670 |
0.015 | 5.0 | 4895 | nan | 0.8061 | 0.8988 | 0.8499 | 0.9691 |
0.0098 | 6.0 | 5874 | nan | 0.8279 | 0.9076 | 0.8659 | 0.9715 |
0.0082 | 7.0 | 6853 | nan | 0.8067 | 0.8905 | 0.8465 | 0.9681 |
0.0042 | 8.0 | 7832 | nan | 0.8233 | 0.9021 | 0.8609 | 0.9737 |
0.0037 | 9.0 | 8811 | nan | 0.8281 | 0.9010 | 0.8630 | 0.9712 |
0.0031 | 10.0 | 9790 | nan | 0.8295 | 0.8966 | 0.8617 | 0.9714 |
Testing Results
metrics={'test_loss': 0.07461995631456375, 'test_precision': 0.8852040816326531, 'test_recall': 0.9137590520079, 'test_f1': 0.8992549400712667, 'test_accuracy': 0.9883402014967543, 'test_runtime': 13.0766, 'test_samples_per_second': 106.297, 'test_steps_per_second': 13.306})
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1