Edit model card

distilbert_dair-ai_emotion_20240730_e20_cos

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the dair-ai/emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1601
  • Accuracy: 0.9395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 32 1.2155 0.576
No log 2.0 64 0.7162 0.7685
No log 3.0 96 0.3572 0.9045
No log 4.0 128 0.2206 0.9265
No log 5.0 160 0.1939 0.926
No log 6.0 192 0.1677 0.9335
No log 7.0 224 0.1637 0.9345
No log 8.0 256 0.1632 0.932
No log 9.0 288 0.1522 0.9385
No log 10.0 320 0.1505 0.937
No log 11.0 352 0.1539 0.9375
No log 12.0 384 0.1554 0.9375
No log 13.0 416 0.1564 0.9395
No log 14.0 448 0.1581 0.9405
No log 15.0 480 0.1597 0.9405
0.2897 16.0 512 0.1590 0.94
0.2897 17.0 544 0.1585 0.94
0.2897 18.0 576 0.1604 0.9385
0.2897 19.0 608 0.1602 0.9395
0.2897 20.0 640 0.1601 0.9395

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Chahnwoo/distilbert_dair-ai_emotion_20240730_e20_cos

Finetuned
(6400)
this model