speecht5_finetuned_tr_commonvoice

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.5179
  • eval_runtime: 361.0936
  • eval_samples_per_second: 32.161
  • eval_steps_per_second: 16.082
  • epoch: 1.6783
  • step: 2000

Model description

import torch
from datasets import load_dataset
import soundfile as sf

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)

from transformers import pipeline
pipe = pipeline("text-to-audio", model="Chan-Y/speecht5_finetuned_tr_commonvoice")
text = "bugün okula erken geldim, çalışmam lazım."
result = pipe(text, forward_params={"speaker_embeddings": speaker_embedding})

sf.write("speech.wav", result["audio"], samplerate=result["sampling_rate"])

from IPython.display import Audio
Audio("speech.wav")

Training and evaluation data

I used CommonVoice Turkish Corpus 19.0

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
31
Safetensors
Model size
144M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Chan-Y/speecht5_finetuned_tr_commonvoice

Finetuned
(847)
this model