llama_3_alpaca_midset_helpful

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
1.6101 0.04 5 1.8019
1.5072 0.08 10 1.3098
1.156 0.12 15 1.2003
1.0047 0.16 20 1.1432
1.0703 0.2 25 1.0834
0.8951 0.24 30 1.0848
0.958 0.28 35 1.0538
1.0478 0.32 40 1.0488
0.9554 0.36 45 1.0497
0.9492 0.4 50 1.0381
0.8987 0.44 55 1.0346
1.0023 0.48 60 1.0310
0.9009 0.52 65 1.0343
1.0744 0.56 70 1.0283
1.0442 0.6 75 1.0278
0.9359 0.64 80 1.0275
0.9779 0.68 85 1.0209
0.9648 0.72 90 1.0263
0.9716 0.76 95 1.0251
0.9314 0.8 100 1.0223
0.9222 0.84 105 1.0225
0.9168 0.88 110 1.0172
0.9443 0.92 115 1.0157
0.9118 0.96 120 1.0106
0.9033 1.0 125 1.0087
0.8561 1.04 130 1.0095
0.7864 1.08 135 1.0143
0.8036 1.12 140 1.0193
0.7636 1.16 145 1.0197
0.8088 1.2 150 1.0189
0.781 1.24 155 1.0157
0.8032 1.28 160 1.0130
0.767 1.32 165 1.0116
0.7653 1.3600 170 1.0115
0.8196 1.4 175 1.0128
0.7688 1.44 180 1.0109
0.8094 1.48 185 1.0107
0.83 1.52 190 1.0110
0.7644 1.56 195 1.0103
0.8796 1.6 200 1.0099

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for CharlesLi/llama_3_alpaca_midset_helpful

Adapter
(535)
this model