Safetensors
LauraWang1107 commited on
Commit
e034544
1 Parent(s): a511921

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -5
README.md CHANGED
@@ -13,15 +13,26 @@ Here's how to extract PepDoRA embeddings for your input peptide:
13
 
14
  ```
15
  import torch
16
- from transformers import AutoTokenizer, AutoModel
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- # Load the model and tokenizer
19
  model_name = "ChatterjeeLab/PepDoRA"
 
 
20
  tokenizer = AutoTokenizer.from_pretrained(model_name)
21
- model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
22
-
23
 
24
- # Input peptide sequence
25
  peptide = "CC(C)C[C@H]1NC(=O)[C@@H](C)NCCCCCCNC(=O)[C@H](CO)NC1=O"
26
 
27
  # Tokenize the peptide
 
13
 
14
  ```
15
  import torch
16
+ from transformers import AutoModel,AutoModelForCausalLM, AutoTokenizer
17
+ from peft import PeftModel, PeftConfig
18
+
19
+
20
+ # Merge the adapter with the base model
21
+ base_model = "DeepChem/ChemBERTa-77M-MLM"
22
+ adapter_model = "ChatterjeeLab/PepDoRA"
23
+ model = AutoModelForCausalLM.from_pretrained(base_model)
24
+ model = PeftModel.from_pretrained(model, adapter_model)
25
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
26
+
27
+
28
+ from transformers import AutoModel
29
 
 
30
  model_name = "ChatterjeeLab/PepDoRA"
31
+
32
+ # Load the model and the tokenizer using AutoModel
33
  tokenizer = AutoTokenizer.from_pretrained(model_name)
34
+ model = AutoModel.from_pretrained(model_name)
 
35
 
 
36
  peptide = "CC(C)C[C@H]1NC(=O)[C@@H](C)NCCCCCCNC(=O)[C@H](CO)NC1=O"
37
 
38
  # Tokenize the peptide