CheeLi03's picture
Upload tokenizer
36035b3 verified
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - it
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Italian 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: fa_ir
          split: None
          args: 'config: it split: test'
        metrics:
          - type: wer
            value: 36.47645153251931
            name: Wer

Whisper Tiny Italian 5k - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5897
  • Wer: 36.4765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.175 4.6083 1000 0.4024 37.5480
0.0198 9.2166 2000 0.4795 36.7555
0.0039 13.8249 3000 0.5412 37.0297
0.0018 18.4332 4000 0.5772 36.4017
0.0013 23.0415 5000 0.5897 36.4765

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1