whisper-tiny-en / README.md
CheeLi03's picture
Upload tokenizer
c0d6a9f verified
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - en
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny English - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: en_us
          split: None
          args: 'config: en split: test'
        metrics:
          - type: wer
            value: 18.418851087562743
            name: Wer

Whisper Tiny English - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6666
  • Wer: 18.4189

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0468 5.3191 1000 0.5352 17.3592
0.0042 10.6383 2000 0.6165 18.6350
0.002 15.9574 3000 0.6532 18.3143
0.0016 21.2766 4000 0.6666 18.4189

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1