whisper-tiny-rus / README.md
CheeLi03's picture
End of training
35ca76d verified
metadata
language:
  - ru
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: Whisper Tiny Rus - Chee Li
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ru_ru
          split: None
          args: 'config: ru split: test'
        metrics:
          - name: Wer
            type: wer
            value: 75.21378941742384

Whisper Tiny Rus - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6000
  • Wer: 75.2138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1479 5.4645 1000 0.4968 79.2090
0.0266 10.9290 2000 0.5468 83.7386
0.0087 16.3934 3000 0.5872 75.7215
0.0066 21.8579 4000 0.6000 75.2138

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1