<Llama2 ๋ชจ๋ธ์ nsmc ๋ฐ์ดํฐ์ ์ ํด๊ฒฐํ๋ ๋ชจ๋ธ์ด ๋๋๋ก ๋ฏธ์ธํ๋ ํ๊ธฐ>
๋ชจ๋ธ: Llama2
๋ฐ์ดํฐ์
: nsmc
https://huggingface.co/datasets/nsmc
Train ๋ฐ์ดํฐ: 3000
Test ๋ฐ์ดํฐ: 1000
[ํ ์คํธ ๊ฒฐ๊ณผ]
์ ํ๋: 86.10%
ํผ๋ํ๋ ฌ(Confusion Matrix)
์ ๋ต Positive | ์ ๋ต Negative | |
---|---|---|
์์ธก Positive | 395 | 26 |
์์ธก Negative | 113 | 466 |
ํ๊ฐ์งํ
์ ๋ฐ๋(Precision) | 0.938 | |
์ฌํ์จ(Recall) | 0.459 | |
F1 Score | 0.616 |
[์ฑ๋ฅ ํฅ์]
train ๋ฐ์ดํฐ ์๋ฅผ 2000์์ 2500, 3000์ผ๋ก ๋๋ ค๊ฐ๋ฉฐ ์ฑ๋ฅ์ ์ฝ 11% ์ ๋ ๋์์ผ๋ฉฐ, TrainingArguments์ max_steps ๋ฑ์ ํ๋ผ๋ฏธํฐ๋ฅผ ์กฐ์ ํด๊ฐ๋ฉฐ ์ฑ๋ฅ์ ๋์ด๊ณ ์ ๋ ธ๋ ฅํ์๋ค.
lora-llama-2-7b-food-order-understanding
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for ChloeKa/lora-llama-2-7b-food-order-understanding
Base model
meta-llama/Llama-2-7b-chat-hf