anthonyrathe's picture
Upload LlamaForCausalLM
a411c36 verified
|
raw
history blame
3.45 kB
metadata
license: llama2
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: llama-2-nl/Llama-2-7b-hf-lora-original-sft
datasets:
  - BramVanroy/ultra_feedback_dutch
model-index:
  - name: Llama-2-7b-hf-lora-original-it
    results: []

Llama-2-7b-hf-lora-original-it

This model is a fine-tuned version of llama-2-nl/Llama-2-7b-hf-lora-original-sft on the BramVanroy/ultra_feedback_dutch dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3536
  • Rewards/chosen: 0.1143
  • Rewards/rejected: -0.9295
  • Rewards/accuracies: 0.9396
  • Rewards/margins: 1.0437
  • Logps/rejected: -547.4578
  • Logps/chosen: -600.8353
  • Logits/rejected: -0.8732
  • Logits/chosen: -0.9594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5984 0.1327 100 0.5904 0.0549 -0.1735 0.9030 0.2283 -539.8975 -601.4293 -1.1606 -1.1395
0.4622 0.2653 200 0.4581 0.1134 -0.4980 0.9351 0.6113 -543.1426 -600.8441 -1.2714 -1.2180
0.3934 0.3980 300 0.3959 0.1263 -0.7212 0.9366 0.8475 -545.3747 -600.7144 -1.0528 -1.0755
0.3629 0.5307 400 0.3674 0.1170 -0.8608 0.9381 0.9777 -546.7705 -600.8080 -1.1109 -1.1154
0.3556 0.6633 500 0.3561 0.1136 -0.9146 0.9388 1.0282 -547.3090 -600.8419 -0.8266 -0.9289
0.3488 0.7960 600 0.3540 0.1104 -0.9310 0.9410 1.0415 -547.4734 -600.8737 -1.0676 -1.0877
0.3563 0.9287 700 0.3540 0.1166 -0.9259 0.9396 1.0425 -547.4224 -600.8121 -0.8736 -0.9600

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1