electra-large-discriminator-nli-efl-hateval

This model is a fine-tuned version of ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.798
  • F1: 0.7968
  • Loss: 0.4166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
0.4175 1.0 210 0.7317 0.7305 0.4020
0.3061 2.0 420 0.768 0.7675 0.3520
0.2588 3.0 630 0.79 0.7888 0.3253
0.234 4.0 840 0.788 0.7877 0.3373
0.2116 5.0 1050 0.804 0.8033 0.3247
0.1974 6.0 1260 0.793 0.7928 0.3400
0.1807 7.0 1470 0.7973 0.7969 0.3511
0.1715 8.0 1680 0.7993 0.7989 0.3496
0.1577 9.0 1890 0.8043 0.8032 0.3507
0.1469 10.0 2100 0.798 0.7970 0.3604
0.1394 11.0 2310 0.7967 0.7957 0.3734
0.1322 12.0 2520 0.7913 0.7906 0.3929
0.1231 13.0 2730 0.795 0.7941 0.3954
0.1189 14.0 2940 0.7977 0.7963 0.3994
0.1143 15.0 3150 0.7993 0.7980 0.3995
0.1083 16.0 3360 0.7927 0.7918 0.4125
0.1079 17.0 3570 0.7993 0.7979 0.4036
0.1055 18.0 3780 0.7967 0.7956 0.4121
0.1006 19.0 3990 0.7973 0.7961 0.4152
0.101 20.0 4200 0.798 0.7968 0.4166

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
88
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.