Update README.md
#2
by
wolfgangblack
- opened
README.md
CHANGED
@@ -1,3 +1,53 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# AGE-ViT
|
6 |
+
Age-classifying Generative Entity Vision Transformer
|
7 |
+
|
8 |
+
A Vision Transformer finetuned to classify images of human faces into 'minor' or 'adult'.
|
9 |
+
|
10 |
+
This model is a finetuned version of https://huggingface.co/nateraw/vit-age-classifier which was finetuned on the fairface dataset.
|
11 |
+
|
12 |
+
## Datasets
|
13 |
+
These datasets were used in finetuning, with fairface finetuning the classifier we built on top of.
|
14 |
+
|
15 |
+
### FairFace dataset
|
16 |
+
https://github.com/dchen236/FairFace
|
17 |
+
|
18 |
+
This is a balanced dataset for race, gender, and age and was initial intended for bias mitigation. The majority of the images in this dataset are direct and front facing.
|
19 |
+
|
20 |
+
### Synthetic Dataset
|
21 |
+
https://civitai.com/models/668458/synthetic-human-dataset
|
22 |
+
|
23 |
+
This dataset was fully generated by flux and contains 15k images of men, women, boys, and girls from the front, side, and slightly above. This dataset will be expanded with sd15 images and the model will be retrained.
|
24 |
+
|
25 |
+
To use the model
|
26 |
+
|
27 |
+
```
|
28 |
+
import requests
|
29 |
+
from PIL import Image
|
30 |
+
from io import BytesIO
|
31 |
+
|
32 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
33 |
+
|
34 |
+
# Get example image from official fairface repo + read it in as an image
|
35 |
+
r = requests.get('https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/9488af10-7f1f-4361-877b-d9cfafeab131/original=true,quality=90/24599129.jpeg')
|
36 |
+
im = Image.open(BytesIO(r.content))
|
37 |
+
|
38 |
+
model_dir = 'civitai/age-vit'
|
39 |
+
|
40 |
+
# Init model, transforms
|
41 |
+
model = ViTForImageClassification.from_pretrained(model_dir)
|
42 |
+
transforms = ViTFeatureExtractor.from_pretrained(model_dir)
|
43 |
+
|
44 |
+
# Transform our image and pass it through the model
|
45 |
+
inputs = transforms(im, return_tensors='pt')
|
46 |
+
output = model(**inputs)
|
47 |
+
|
48 |
+
# Predicted Class probabilities
|
49 |
+
proba = output.logits.softmax(1)
|
50 |
+
|
51 |
+
# Predicted Classes
|
52 |
+
preds = proba.argmax(1)
|
53 |
+
```
|