|
<table border="1" class="dataframe"> |
|
<tbody> |
|
<tr> |
|
<th>Problem</th> |
|
<td>Classification</td> |
|
</tr> |
|
<tr> |
|
<th>Target Column Name</th> |
|
<td>target</td> |
|
</tr> |
|
<tr> |
|
<th>Model's Name</th> |
|
<td>RandomForestClassifier</td> |
|
</tr> |
|
<tr> |
|
<th>Accuracy Score</th> |
|
<td>0.85000</td> |
|
</tr> |
|
<tr> |
|
<th>Roc Auc curve</th> |
|
<td>0.850</td> |
|
</tr> |
|
<tr> |
|
<th>Mean accuracy score of each tested hyperparameter combination</th> |
|
<td>0.732</td> |
|
</tr> |
|
<tr> |
|
<th>Range of all accuracy scores of each tested hyperparameter combination</th> |
|
<td>0.708 - 0.792</td> |
|
</tr> |
|
<tr> |
|
<th>Standard Deviation of scores</th> |
|
<td>0.031</td> |
|
</tr> |
|
<tr> |
|
<th>Standard Deviation < 0.1 * Mean Accuracy scores</th> |
|
<td>The scores are relatively consistent.</td> |
|
</tr> |
|
</tbody> |
|
</table><font size= 6><p><b> Classification Report:<br><table border="1" class="dataframe"> |
|
<thead> |
|
<tr style="text-align: right;"> |
|
<th></th> |
|
<th>precision</th> |
|
<th>recall</th> |
|
<th>f1-score</th> |
|
<th>support</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th>N</th> |
|
<td>0.838710</td> |
|
<td>0.866667</td> |
|
<td>0.852459</td> |
|
<td>30.00</td> |
|
</tr> |
|
<tr> |
|
<th>P</th> |
|
<td>0.862069</td> |
|
<td>0.833333</td> |
|
<td>0.847458</td> |
|
<td>30.00</td> |
|
</tr> |
|
<tr> |
|
<th>accuracy</th> |
|
<td>0.850000</td> |
|
<td>0.850000</td> |
|
<td>0.850000</td> |
|
<td>0.85</td> |
|
</tr> |
|
<tr> |
|
<th>macro avg</th> |
|
<td>0.850389</td> |
|
<td>0.850000</td> |
|
<td>0.849958</td> |
|
<td>60.00</td> |
|
</tr> |
|
<tr> |
|
<th>weighted avg</th> |
|
<td>0.850389</td> |
|
<td>0.850000</td> |
|
<td>0.849958</td> |
|
<td>60.00</td> |
|
</tr> |
|
</tbody> |
|
</table><br><img src = "C:\Users\micha\Desktop\Proddis\new_experiment_data\normal_age_version\RandomForestClassifier_Pipeline\test_plot_classif_report.png" alt ="cfg"><br><font size= 6><b> Roc Auc curve figure:</b></font><br><img src = "C:\Users\micha\Desktop\Proddis\new_experiment_data\normal_age_version\RandomForestClassifier_Pipeline\plot_roc_curve.png" alt ="cfg"><br><font size= 6><p><b> Overfit Report:<br><table border="1" class="dataframe"> |
|
<tbody> |
|
<tr> |
|
<th>Overfit Report</th> |
|
<td>The Report is based only on Accuracy</td> |
|
</tr> |
|
<tr> |
|
<th>Train set accuracy score of best pipeline</th> |
|
<td>0.8661</td> |
|
</tr> |
|
<tr> |
|
<th>Test set accuracy score of best pipeline</th> |
|
<td>0.8500</td> |
|
</tr> |
|
<tr> |
|
<th>Overfit estimation score of the best pipeline</th> |
|
<td>0.0161</td> |
|
</tr> |
|
<tr> |
|
<th>Learning Curve scores report</th> |
|
<td>The Learning Curve is based on Accuracy</td> |
|
</tr> |
|
<tr> |
|
<th>Train set accuracy score of learning curve's last value</th> |
|
<td>0.87</td> |
|
</tr> |
|
<tr> |
|
<th>Test set accuracy score of learning curve's last value</th> |
|
<td>0.78</td> |
|
</tr> |
|
<tr> |
|
<th>Overfit gap of learning curve's last value</th> |
|
<td>0.09</td> |
|
</tr> |
|
</tbody> |
|
</table><br><font size= 6><b> Learning Curve - Overfitting or Underfitting:</b></font><br><img src = "C:\Users\micha\Desktop\Proddis\new_experiment_data\normal_age_version\RandomForestClassifier_Pipeline\overfitting_plot.png" alt ="cfg"> |