metadata
license: mit
tags:
- generated_from_trainer
datasets:
- pawsx
metrics:
- accuracy
- f1
model-index:
- name: camembert-base-finetuned-paraphrase
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: pawsx
type: pawsx
args: fr
metrics:
- name: Accuracy
type: accuracy
value: 0.9085
- name: F1
type: f1
value: 0.9088724090678741
camembert-base-finetuned-paraphrase
This model is a fine-tuned version of camembert-base on the pawsx dataset. It achieves the following results on the evaluation set:
- Loss: 0.2708
- Accuracy: 0.9085
- F1: 0.9089
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.3918 | 1.0 | 772 | 0.3211 | 0.869 | 0.8696 |
0.2103 | 2.0 | 1544 | 0.2448 | 0.9075 | 0.9077 |
0.1622 | 3.0 | 2316 | 0.2577 | 0.9055 | 0.9059 |
0.1344 | 4.0 | 3088 | 0.2708 | 0.9085 | 0.9089 |
Framework versions
- Transformers 4.19.3
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1