CocoRoF's picture
CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
8ea8efa verified
|
raw
history blame
23.5 kB
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
base_model: CocoRoF/mobert_retry_SimCSE_test
widget:
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 371km / s에서 별자리 leo
쪽으로. "
sentences:
- 두 마리의 독수리가 가지에 앉는다.
- 다른 물체와는 관련이 없는 '정지'는 없다.
- 소녀는 버스의 열린 문 앞에 서 있다.
- source_sentence: 숲에는 개들이 있다.
sentences:
- 양을 보는 아이들.
- 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
- 개들은 숲속에 혼자 있다.
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
sentences:
- 그들은 물건들을 주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
- 세미콜론은 혼자 있을 있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
- 그의 남동생이 지켜보는 동안 앞에서 트럼펫을 연주하는 금발의 아이.
- source_sentence: 여성이 생선 껍질을 벗기고 있다.
sentences:
- 남자가 수영장으로 뛰어들었다.
- 여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
- 마리의 갈색 개가 속에서 서로 놀고 있다.
- source_sentence: 버스가 바쁜 길을 따라 운전한다.
sentences:
- 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
- 여자는 데이트하러 가는 중이다.
- 녹색 버스가 도로를 따라 내려간다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_euclidean
- spearman_euclidean
- pearson_manhattan
- spearman_manhattan
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts_dev
metrics:
- type: pearson_cosine
value: 0.7885728442437165
name: Pearson Cosine
- type: spearman_cosine
value: 0.7890106880187878
name: Spearman Cosine
- type: pearson_euclidean
value: 0.7209624590910948
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7132906703480484
name: Spearman Euclidean
- type: pearson_manhattan
value: 0.7228003273015342
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7161151111265872
name: Spearman Manhattan
- type: pearson_dot
value: 0.7119673656141701
name: Pearson Dot
- type: spearman_dot
value: 0.7059066541365785
name: Spearman Dot
- type: pearson_max
value: 0.7885728442437165
name: Pearson Max
- type: spearman_max
value: 0.7890106880187878
name: Spearman Max
---
# SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CocoRoF/mobert_retry_SimCSE_test](https://huggingface.co/CocoRoF/mobert_retry_SimCSE_test). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [CocoRoF/mobert_retry_SimCSE_test](https://huggingface.co/CocoRoF/mobert_retry_SimCSE_test) <!-- at revision 94f4e00947539b6741c4a31b977a66220298317d -->
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-retry")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:----------|
| pearson_cosine | 0.7886 |
| spearman_cosine | 0.789 |
| pearson_euclidean | 0.721 |
| spearman_euclidean | 0.7133 |
| pearson_manhattan | 0.7228 |
| spearman_manhattan | 0.7161 |
| pearson_dot | 0.712 |
| spearman_dot | 0.7059 |
| pearson_max | 0.7886 |
| **spearman_max** | **0.789** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 13.52 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 13.41 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------|:------------------------------------------|:------------------|
| <code>비행기가 이륙하고 있다.</code> | <code>비행기가 이륙하고 있다.</code> | <code>1.0</code> |
| <code>한 남자가 큰 플루트를 연주하고 있다.</code> | <code>남자가 플루트를 연주하고 있다.</code> | <code>0.76</code> |
| <code>한 남자가 피자에 치즈를 뿌려놓고 있다.</code> | <code>한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.52 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------|:------------------------------------|:------------------|
| <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code> |
| <code>어린아이가 말을 타고 있다.</code> | <code>아이가 말을 타고 있다.</code> | <code>0.95</code> |
| <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `gradient_accumulation_steps`: 16
- `learning_rate`: 8e-05
- `num_train_epochs`: 10.0
- `warmup_ratio`: 0.2
- `push_to_hub`: True
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
- `hub_strategy`: checkpoint
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
| 0.1114 | 5 | - | 0.0377 | 0.7471 |
| 0.2228 | 10 | 0.6923 | 0.0377 | 0.7471 |
| 0.3343 | 15 | - | 0.0376 | 0.7473 |
| 0.4457 | 20 | 0.6832 | 0.0376 | 0.7475 |
| 0.5571 | 25 | - | 0.0375 | 0.7479 |
| 0.6685 | 30 | 0.6787 | 0.0375 | 0.7484 |
| 0.7799 | 35 | - | 0.0374 | 0.7488 |
| 0.8914 | 40 | 0.6154 | 0.0373 | 0.7494 |
| 1.0223 | 45 | - | 0.0372 | 0.7500 |
| 1.1337 | 50 | 0.6231 | 0.0371 | 0.7506 |
| 1.2451 | 55 | - | 0.0370 | 0.7512 |
| 1.3565 | 60 | 0.6562 | 0.0369 | 0.7519 |
| 1.4680 | 65 | - | 0.0368 | 0.7526 |
| 1.5794 | 70 | 0.6578 | 0.0366 | 0.7534 |
| 1.6908 | 75 | - | 0.0365 | 0.7541 |
| 1.8022 | 80 | 0.6669 | 0.0364 | 0.7549 |
| 1.9136 | 85 | - | 0.0363 | 0.7559 |
| 2.0446 | 90 | 0.6428 | 0.0361 | 0.7568 |
| 2.1560 | 95 | - | 0.0360 | 0.7577 |
| 2.2674 | 100 | 0.5854 | 0.0358 | 0.7586 |
| 2.3788 | 105 | - | 0.0357 | 0.7597 |
| 2.4903 | 110 | 0.6027 | 0.0356 | 0.7607 |
| 2.6017 | 115 | - | 0.0354 | 0.7618 |
| 2.7131 | 120 | 0.6375 | 0.0353 | 0.7627 |
| 2.8245 | 125 | - | 0.0351 | 0.7635 |
| 2.9359 | 130 | 0.6204 | 0.0350 | 0.7643 |
| 3.0669 | 135 | - | 0.0348 | 0.7653 |
| 3.1783 | 140 | 0.6077 | 0.0347 | 0.7663 |
| 3.2897 | 145 | - | 0.0346 | 0.7672 |
| 3.4011 | 150 | 0.5772 | 0.0344 | 0.7681 |
| 3.5125 | 155 | - | 0.0343 | 0.7690 |
| 3.6240 | 160 | 0.5793 | 0.0341 | 0.7698 |
| 3.7354 | 165 | - | 0.0340 | 0.7705 |
| 3.8468 | 170 | 0.5807 | 0.0338 | 0.7712 |
| 3.9582 | 175 | - | 0.0337 | 0.7721 |
| 4.0891 | 180 | 0.5576 | 0.0336 | 0.7729 |
| 4.2006 | 185 | - | 0.0334 | 0.7734 |
| 4.3120 | 190 | 0.5244 | 0.0333 | 0.7740 |
| 4.4234 | 195 | - | 0.0332 | 0.7748 |
| 4.5348 | 200 | 0.539 | 0.0331 | 0.7754 |
| 4.6462 | 205 | - | 0.0330 | 0.7760 |
| 4.7577 | 210 | 0.5517 | 0.0329 | 0.7765 |
| 4.8691 | 215 | - | 0.0328 | 0.7769 |
| 4.9805 | 220 | 0.5265 | 0.0327 | 0.7776 |
| 5.1114 | 225 | - | 0.0326 | 0.7780 |
| 5.2228 | 230 | 0.5285 | 0.0325 | 0.7783 |
| 5.3343 | 235 | - | 0.0324 | 0.7789 |
| 5.4457 | 240 | 0.4697 | 0.0323 | 0.7793 |
| 5.5571 | 245 | - | 0.0323 | 0.7798 |
| 5.6685 | 250 | 0.4913 | 0.0322 | 0.7804 |
| 5.7799 | 255 | - | 0.0321 | 0.7809 |
| 5.8914 | 260 | 0.5253 | 0.0320 | 0.7813 |
| 6.0223 | 265 | - | 0.0320 | 0.7817 |
| 6.1337 | 270 | 0.4924 | 0.0319 | 0.7819 |
| 6.2451 | 275 | - | 0.0318 | 0.7820 |
| 6.3565 | 280 | 0.4844 | 0.0317 | 0.7822 |
| 6.4680 | 285 | - | 0.0317 | 0.7825 |
| 6.5794 | 290 | 0.442 | 0.0316 | 0.7827 |
| 6.6908 | 295 | - | 0.0315 | 0.7830 |
| 6.8022 | 300 | 0.4665 | 0.0314 | 0.7834 |
| 6.9136 | 305 | - | 0.0314 | 0.7839 |
| 7.0446 | 310 | 0.4672 | 0.0314 | 0.7843 |
| 7.1560 | 315 | - | 0.0314 | 0.7851 |
| 7.2674 | 320 | 0.4131 | 0.0314 | 0.7850 |
| 7.3788 | 325 | - | 0.0313 | 0.7849 |
| 7.4903 | 330 | 0.4221 | 0.0312 | 0.7848 |
| 7.6017 | 335 | - | 0.0311 | 0.7854 |
| 7.7131 | 340 | 0.4268 | 0.0310 | 0.7857 |
| 7.8245 | 345 | - | 0.0309 | 0.7861 |
| 7.9359 | 350 | 0.4316 | 0.0309 | 0.7866 |
| 8.0669 | 355 | - | 0.0309 | 0.7872 |
| 8.1783 | 360 | 0.4277 | 0.0309 | 0.7873 |
| 8.2897 | 365 | - | 0.0308 | 0.7870 |
| 8.4011 | 370 | 0.3925 | 0.0308 | 0.7868 |
| 8.5125 | 375 | - | 0.0308 | 0.7866 |
| 8.6240 | 380 | 0.4049 | 0.0308 | 0.7869 |
| 8.7354 | 385 | - | 0.0308 | 0.7875 |
| 8.8468 | 390 | 0.3742 | 0.0308 | 0.7883 |
| 8.9582 | 395 | - | 0.0307 | 0.7885 |
| 9.0891 | 400 | 0.3498 | 0.0307 | 0.7886 |
| 9.2006 | 405 | - | 0.0307 | 0.7881 |
| 9.3120 | 410 | 0.3569 | 0.0307 | 0.7878 |
| 9.4234 | 415 | - | 0.0307 | 0.7876 |
| 9.5348 | 420 | 0.3312 | 0.0306 | 0.7877 |
| 9.6462 | 425 | - | 0.0305 | 0.7881 |
| 9.7577 | 430 | 0.3848 | 0.0304 | 0.7885 |
| 9.8691 | 435 | - | 0.0304 | 0.7889 |
| 9.9805 | 440 | 0.332 | 0.0305 | 0.7890 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->