|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:5749 |
|
- loss:CosineSimilarityLoss |
|
base_model: CocoRoF/mobert_retry_SimCSE_test |
|
widget: |
|
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo |
|
쪽으로. " |
|
sentences: |
|
- 두 마리의 독수리가 가지에 앉는다. |
|
- 다른 물체와는 관련이 없는 '정지'는 없다. |
|
- 소녀는 버스의 열린 문 앞에 서 있다. |
|
- source_sentence: 숲에는 개들이 있다. |
|
sentences: |
|
- 양을 보는 아이들. |
|
- 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다. |
|
- 개들은 숲속에 혼자 있다. |
|
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.' |
|
sentences: |
|
- 그들은 그 물건들을 집 주변에 두고 가거나 집의 정리를 해칠 의도가 없다. |
|
- 세미콜론은 혼자 있을 수 있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다. |
|
- 그의 남동생이 지켜보는 동안 집 앞에서 트럼펫을 연주하는 금발의 아이. |
|
- source_sentence: 한 여성이 생선 껍질을 벗기고 있다. |
|
sentences: |
|
- 한 남자가 수영장으로 뛰어들었다. |
|
- 한 여성이 프라이팬에 노란 혼합물을 부어 넣고 있다. |
|
- 두 마리의 갈색 개가 눈 속에서 서로 놀고 있다. |
|
- source_sentence: 버스가 바쁜 길을 따라 운전한다. |
|
sentences: |
|
- 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다. |
|
- 그 여자는 데이트하러 가는 중이다. |
|
- 녹색 버스가 도로를 따라 내려간다. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
model-index: |
|
- name: SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts_dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7885728442437165 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7890106880187878 |
|
name: Spearman Cosine |
|
- type: pearson_euclidean |
|
value: 0.7209624590910948 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7132906703480484 |
|
name: Spearman Euclidean |
|
- type: pearson_manhattan |
|
value: 0.7228003273015342 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7161151111265872 |
|
name: Spearman Manhattan |
|
- type: pearson_dot |
|
value: 0.7119673656141701 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7059066541365785 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7885728442437165 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7890106880187878 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CocoRoF/mobert_retry_SimCSE_test](https://huggingface.co/CocoRoF/mobert_retry_SimCSE_test). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [CocoRoF/mobert_retry_SimCSE_test](https://huggingface.co/CocoRoF/mobert_retry_SimCSE_test) <!-- at revision 94f4e00947539b6741c4a31b977a66220298317d --> |
|
- **Maximum Sequence Length:** 2048 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-retry") |
|
# Run inference |
|
sentences = [ |
|
'버스가 바쁜 길을 따라 운전한다.', |
|
'녹색 버스가 도로를 따라 내려간다.', |
|
'그 여자는 데이트하러 가는 중이다.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts_dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:----------| |
|
| pearson_cosine | 0.7886 | |
|
| spearman_cosine | 0.789 | |
|
| pearson_euclidean | 0.721 | |
|
| spearman_euclidean | 0.7133 | |
|
| pearson_manhattan | 0.7228 | |
|
| spearman_manhattan | 0.7161 | |
|
| pearson_dot | 0.712 | |
|
| spearman_dot | 0.7059 | |
|
| pearson_max | 0.7886 | |
|
| **spearman_max** | **0.789** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 13.52 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 13.41 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------|:------------------------------------------|:------------------| |
|
| <code>비행기가 이륙하고 있다.</code> | <code>비행기가 이륙하고 있다.</code> | <code>1.0</code> | |
|
| <code>한 남자가 큰 플루트를 연주하고 있다.</code> | <code>남자가 플루트를 연주하고 있다.</code> | <code>0.76</code> | |
|
| <code>한 남자가 피자에 치즈를 뿌려놓고 있다.</code> | <code>한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.</code> | <code>0.76</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.52 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------|:------------------------------------|:------------------| |
|
| <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code> | |
|
| <code>어린아이가 말을 타고 있다.</code> | <code>아이가 말을 타고 있다.</code> | <code>0.95</code> | |
|
| <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>1.0</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `overwrite_output_dir`: True |
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 1 |
|
- `per_device_eval_batch_size`: 1 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 8e-05 |
|
- `num_train_epochs`: 10.0 |
|
- `warmup_ratio`: 0.2 |
|
- `push_to_hub`: True |
|
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry |
|
- `hub_strategy`: checkpoint |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: True |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 1 |
|
- `per_device_eval_batch_size`: 1 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 8e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10.0 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: True |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry |
|
- `hub_strategy`: checkpoint |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max | |
|
|:------:|:----:|:-------------:|:---------------:|:--------------------:| |
|
| 0.1114 | 5 | - | 0.0377 | 0.7471 | |
|
| 0.2228 | 10 | 0.6923 | 0.0377 | 0.7471 | |
|
| 0.3343 | 15 | - | 0.0376 | 0.7473 | |
|
| 0.4457 | 20 | 0.6832 | 0.0376 | 0.7475 | |
|
| 0.5571 | 25 | - | 0.0375 | 0.7479 | |
|
| 0.6685 | 30 | 0.6787 | 0.0375 | 0.7484 | |
|
| 0.7799 | 35 | - | 0.0374 | 0.7488 | |
|
| 0.8914 | 40 | 0.6154 | 0.0373 | 0.7494 | |
|
| 1.0223 | 45 | - | 0.0372 | 0.7500 | |
|
| 1.1337 | 50 | 0.6231 | 0.0371 | 0.7506 | |
|
| 1.2451 | 55 | - | 0.0370 | 0.7512 | |
|
| 1.3565 | 60 | 0.6562 | 0.0369 | 0.7519 | |
|
| 1.4680 | 65 | - | 0.0368 | 0.7526 | |
|
| 1.5794 | 70 | 0.6578 | 0.0366 | 0.7534 | |
|
| 1.6908 | 75 | - | 0.0365 | 0.7541 | |
|
| 1.8022 | 80 | 0.6669 | 0.0364 | 0.7549 | |
|
| 1.9136 | 85 | - | 0.0363 | 0.7559 | |
|
| 2.0446 | 90 | 0.6428 | 0.0361 | 0.7568 | |
|
| 2.1560 | 95 | - | 0.0360 | 0.7577 | |
|
| 2.2674 | 100 | 0.5854 | 0.0358 | 0.7586 | |
|
| 2.3788 | 105 | - | 0.0357 | 0.7597 | |
|
| 2.4903 | 110 | 0.6027 | 0.0356 | 0.7607 | |
|
| 2.6017 | 115 | - | 0.0354 | 0.7618 | |
|
| 2.7131 | 120 | 0.6375 | 0.0353 | 0.7627 | |
|
| 2.8245 | 125 | - | 0.0351 | 0.7635 | |
|
| 2.9359 | 130 | 0.6204 | 0.0350 | 0.7643 | |
|
| 3.0669 | 135 | - | 0.0348 | 0.7653 | |
|
| 3.1783 | 140 | 0.6077 | 0.0347 | 0.7663 | |
|
| 3.2897 | 145 | - | 0.0346 | 0.7672 | |
|
| 3.4011 | 150 | 0.5772 | 0.0344 | 0.7681 | |
|
| 3.5125 | 155 | - | 0.0343 | 0.7690 | |
|
| 3.6240 | 160 | 0.5793 | 0.0341 | 0.7698 | |
|
| 3.7354 | 165 | - | 0.0340 | 0.7705 | |
|
| 3.8468 | 170 | 0.5807 | 0.0338 | 0.7712 | |
|
| 3.9582 | 175 | - | 0.0337 | 0.7721 | |
|
| 4.0891 | 180 | 0.5576 | 0.0336 | 0.7729 | |
|
| 4.2006 | 185 | - | 0.0334 | 0.7734 | |
|
| 4.3120 | 190 | 0.5244 | 0.0333 | 0.7740 | |
|
| 4.4234 | 195 | - | 0.0332 | 0.7748 | |
|
| 4.5348 | 200 | 0.539 | 0.0331 | 0.7754 | |
|
| 4.6462 | 205 | - | 0.0330 | 0.7760 | |
|
| 4.7577 | 210 | 0.5517 | 0.0329 | 0.7765 | |
|
| 4.8691 | 215 | - | 0.0328 | 0.7769 | |
|
| 4.9805 | 220 | 0.5265 | 0.0327 | 0.7776 | |
|
| 5.1114 | 225 | - | 0.0326 | 0.7780 | |
|
| 5.2228 | 230 | 0.5285 | 0.0325 | 0.7783 | |
|
| 5.3343 | 235 | - | 0.0324 | 0.7789 | |
|
| 5.4457 | 240 | 0.4697 | 0.0323 | 0.7793 | |
|
| 5.5571 | 245 | - | 0.0323 | 0.7798 | |
|
| 5.6685 | 250 | 0.4913 | 0.0322 | 0.7804 | |
|
| 5.7799 | 255 | - | 0.0321 | 0.7809 | |
|
| 5.8914 | 260 | 0.5253 | 0.0320 | 0.7813 | |
|
| 6.0223 | 265 | - | 0.0320 | 0.7817 | |
|
| 6.1337 | 270 | 0.4924 | 0.0319 | 0.7819 | |
|
| 6.2451 | 275 | - | 0.0318 | 0.7820 | |
|
| 6.3565 | 280 | 0.4844 | 0.0317 | 0.7822 | |
|
| 6.4680 | 285 | - | 0.0317 | 0.7825 | |
|
| 6.5794 | 290 | 0.442 | 0.0316 | 0.7827 | |
|
| 6.6908 | 295 | - | 0.0315 | 0.7830 | |
|
| 6.8022 | 300 | 0.4665 | 0.0314 | 0.7834 | |
|
| 6.9136 | 305 | - | 0.0314 | 0.7839 | |
|
| 7.0446 | 310 | 0.4672 | 0.0314 | 0.7843 | |
|
| 7.1560 | 315 | - | 0.0314 | 0.7851 | |
|
| 7.2674 | 320 | 0.4131 | 0.0314 | 0.7850 | |
|
| 7.3788 | 325 | - | 0.0313 | 0.7849 | |
|
| 7.4903 | 330 | 0.4221 | 0.0312 | 0.7848 | |
|
| 7.6017 | 335 | - | 0.0311 | 0.7854 | |
|
| 7.7131 | 340 | 0.4268 | 0.0310 | 0.7857 | |
|
| 7.8245 | 345 | - | 0.0309 | 0.7861 | |
|
| 7.9359 | 350 | 0.4316 | 0.0309 | 0.7866 | |
|
| 8.0669 | 355 | - | 0.0309 | 0.7872 | |
|
| 8.1783 | 360 | 0.4277 | 0.0309 | 0.7873 | |
|
| 8.2897 | 365 | - | 0.0308 | 0.7870 | |
|
| 8.4011 | 370 | 0.3925 | 0.0308 | 0.7868 | |
|
| 8.5125 | 375 | - | 0.0308 | 0.7866 | |
|
| 8.6240 | 380 | 0.4049 | 0.0308 | 0.7869 | |
|
| 8.7354 | 385 | - | 0.0308 | 0.7875 | |
|
| 8.8468 | 390 | 0.3742 | 0.0308 | 0.7883 | |
|
| 8.9582 | 395 | - | 0.0307 | 0.7885 | |
|
| 9.0891 | 400 | 0.3498 | 0.0307 | 0.7886 | |
|
| 9.2006 | 405 | - | 0.0307 | 0.7881 | |
|
| 9.3120 | 410 | 0.3569 | 0.0307 | 0.7878 | |
|
| 9.4234 | 415 | - | 0.0307 | 0.7876 | |
|
| 9.5348 | 420 | 0.3312 | 0.0306 | 0.7877 | |
|
| 9.6462 | 425 | - | 0.0305 | 0.7881 | |
|
| 9.7577 | 430 | 0.3848 | 0.0304 | 0.7885 | |
|
| 9.8691 | 435 | - | 0.0304 | 0.7889 | |
|
| 9.9805 | 440 | 0.332 | 0.0305 | 0.7890 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.10 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.3.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |