|
--- |
|
library_name: transformers |
|
base_model: CocoRoF/ModernBERT-SimCSE-multitask_v03-distill |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ModernBERT_category |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ModernBERT_category |
|
|
|
This model is a fine-tuned version of [CocoRoF/ModernBERT-SimCSE-multitask_v03-distill](https://huggingface.co/CocoRoF/ModernBERT-SimCSE-multitask_v03-distill) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3204 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 1024 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 15.608 | 0.0444 | 1000 | 0.4726 | |
|
| 14.207 | 0.0888 | 2000 | 0.4257 | |
|
| 12.9331 | 0.1331 | 3000 | 0.4045 | |
|
| 12.5004 | 0.1775 | 4000 | 0.3896 | |
|
| 12.5729 | 0.2219 | 5000 | 0.3786 | |
|
| 12.2146 | 0.2663 | 6000 | 0.3713 | |
|
| 11.8243 | 0.3107 | 7000 | 0.3632 | |
|
| 11.3651 | 0.3550 | 8000 | 0.3578 | |
|
| 11.7742 | 0.3994 | 9000 | 0.3524 | |
|
| 11.022 | 0.4438 | 10000 | 0.3483 | |
|
| 10.871 | 0.4882 | 11000 | 0.3453 | |
|
| 11.24 | 0.5326 | 12000 | 0.3404 | |
|
| 10.6222 | 0.5769 | 13000 | 0.3380 | |
|
| 10.9927 | 0.6213 | 14000 | 0.3354 | |
|
| 10.8912 | 0.6657 | 15000 | 0.3330 | |
|
| 10.7683 | 0.7101 | 16000 | 0.3311 | |
|
| 10.4059 | 0.7545 | 17000 | 0.3286 | |
|
| 10.4617 | 0.7988 | 18000 | 0.3258 | |
|
| 10.5632 | 0.8432 | 19000 | 0.3247 | |
|
| 9.9193 | 0.8876 | 20000 | 0.3231 | |
|
| 9.7854 | 0.9320 | 21000 | 0.3205 | |
|
| 10.3546 | 0.9764 | 22000 | 0.3204 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.1 |
|
- Tokenizers 0.21.0 |
|
|