|
--- |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
|
|
# CodeRosetta |
|
## Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming ([📃Paper](https://arxiv.org/abs/2410.20527), [🔗Website](https://coderosetta.com/)). |
|
|
|
|
|
CodeRosetta is an EncoderDecoder translation model. It supports the translation of C++, CUDA, and Fortran. \ |
|
This version of the model is the base version of **C++-CUDA translation** without being fine-tuned. |
|
|
|
### How to use |
|
|
|
```python |
|
from transformers import AutoTokenizer, EncoderDecoderModel |
|
|
|
# Load the CodeRosetta model and tokenizer |
|
model = EncoderDecoderModel.from_pretrained('CodeRosetta/CodeRosetta_cpp_cuda_base') |
|
tokenizer = AutoTokenizer.from_pretrained('CodeRosetta/CodeRosetta_cpp_cuda_base') |
|
|
|
# Encode the input C++ Code |
|
input_cpp_code = "void add_100 ( int numElements , int * data ) { for ( int idx = 0 ; idx < numElements ; idx ++ ) { data [ idx ] += 100 ; } }" |
|
input_ids = tokenizer.encode(input_cpp_code, return_tensors="pt") |
|
|
|
# Set the start token to <CUDA> |
|
start_token = "<CUDA>" # If input is CUDA code, change the start token to <CPP> |
|
decoder_start_token_id = tokenizer.convert_tokens_to_ids(start_token) |
|
|
|
# Generate the CUDA code |
|
output = model.generate( |
|
input_ids=input_ids, |
|
decoder_start_token_id=decoder_start_token_id, |
|
max_length=256 |
|
) |
|
|
|
# Decode and print the generated output |
|
generated_code = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_code) |
|
``` |
|
|
|
### BibTeX |
|
|
|
```bibtex |
|
@inproceedings{coderosetta:neurips:2024, |
|
title = {CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming}, |
|
author = {TehraniJamsaz, Ali and Bhattacharjee, Arijit and Chen, Le and Ahmed, Nesreen K and Yazdanbakhsh, Amir and Jannesari, Ali}, |
|
booktitle = {NeurIPS}, |
|
year = {2024}, |
|
} |
|
|