metadata
license: apache-2.0
CSC T5 - T5 for Traditional Chinese Spelling Correction
This model was obtained by instruction-tuning
the corresponding ClueAI/PromptCLUE-base-v1-5
model on the spelling error corpus.
Model Details
Model Description
- Language(s) (NLP):
Chinese
- Pretrained from model:
ClueAI/PromptCLUE-base-v1-5
- Pretrained by dataset:
1M UDN news corpus
- Finetuned by dataset:
shibing624/CSC
spelling error corpus
Model Sources
Usage
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
input_text = '糾正句子裡的錯字: 為了降低少子化,政府可以堆動獎勵生育的政策。'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)