|
|
|
|
|
from transformers import PreTrainedTokenizer |
|
import json |
|
|
|
class CognitivessTokenizer(PreTrainedTokenizer): |
|
def __init__(self, vocab_file, merges_file=None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_file = vocab_file |
|
self.merges_file = merges_file |
|
self.load_vocab() |
|
|
|
def load_vocab(self): |
|
|
|
with open(self.vocab_file, 'r') as f: |
|
self.vocab = {line.strip(): idx for idx, line in enumerate(f)} |
|
|
|
|
|
self.merges = [] |
|
if self.merges_file: |
|
with open(self.merges_file, 'r') as f: |
|
self.merges = [line.strip() for line in f] |
|
|
|
def _tokenize(self, text): |
|
|
|
tokens = text.split() |
|
return tokens |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
return [self.vocab.get(token, self.vocab.get('[UNK]')) for token in tokens] |
|
|
|
def convert_ids_to_tokens(self, ids): |
|
reverse_vocab = {idx: token for token, idx in self.vocab.items()} |
|
return [reverse_vocab.get(idx, '[UNK]') for idx in ids] |
|
|
|
def save_vocabulary(self, save_directory): |
|
vocab_path = f"{save_directory}/vocab.txt" |
|
with open(vocab_path, 'w') as f: |
|
for token in self.vocab: |
|
f.write(f"{token}\n") |
|
|
|
if self.merges_file: |
|
merges_path = f"{save_directory}/merges.txt" |
|
with open(merges_path, 'w') as f: |
|
for merge in self.merges: |
|
f.write(f"{merge}\n") |
|
return vocab_path, merges_path |
|
return vocab_path, |
|
|