|
# Cognitivess Model |
|
|
|
## Usage |
|
|
|
To use this model, first install the custom package: |
|
|
|
```bash |
|
pip install git+https://huggingface.co/CognitivessAI/cognitivess |
|
``` |
|
|
|
Then, you can use the model like this: |
|
|
|
```python |
|
# Install required packages |
|
#pip install bitsandbytes accelerate |
|
#pip install git+https://huggingface.co/CognitivessAI/cognitivess |
|
|
|
# Import necessary libraries |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
import torch |
|
|
|
# Import and register your custom classes |
|
from cognitivess_model import CognitivessConfig, CognitivessForCausalLM |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
AutoConfig.register("cognitivess", CognitivessConfig) |
|
AutoModelForCausalLM.register(CognitivessConfig, CognitivessForCausalLM) |
|
|
|
# Set up quantization config |
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("CognitivessAI/cognitivess") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"CognitivessAI/cognitivess", |
|
quantization_config=quantization_config, |
|
device_map="auto" |
|
) |
|
|
|
# Prepare input |
|
input_text = "Write me a poem about Machine Learning." |
|
inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# Generate output |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_length=100) |
|
|
|
# Decode and print the result |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|