|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v2 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: test |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9352766798418972 |
|
- name: Recall |
|
type: recall |
|
value: 0.9288518155053974 |
|
- name: F1 |
|
type: f1 |
|
value: 0.93205317577548 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9817219554779573 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v2 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0955 |
|
- Precision: 0.9353 |
|
- Recall: 0.9289 |
|
- F1: 0.9321 |
|
- Accuracy: 0.9817 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5913 | 1.0 | 609 | 0.2667 | 0.6740 | 0.7620 | 0.7153 | 0.9336 | |
|
| 0.2461 | 2.0 | 1218 | 0.1704 | 0.7981 | 0.8437 | 0.8203 | 0.9562 | |
|
| 0.1784 | 3.0 | 1827 | 0.1273 | 0.8578 | 0.8943 | 0.8757 | 0.9669 | |
|
| 0.1337 | 4.0 | 2436 | 0.1048 | 0.8731 | 0.9132 | 0.8927 | 0.9726 | |
|
| 0.0868 | 5.0 | 3045 | 0.0988 | 0.9129 | 0.9178 | 0.9153 | 0.9760 | |
|
| 0.0736 | 6.0 | 3654 | 0.0961 | 0.9146 | 0.9225 | 0.9185 | 0.9781 | |
|
| 0.0602 | 7.0 | 4263 | 0.0877 | 0.9270 | 0.9222 | 0.9246 | 0.9798 | |
|
| 0.0566 | 8.0 | 4872 | 0.0948 | 0.9281 | 0.9222 | 0.9252 | 0.9807 | |
|
| 0.0514 | 9.0 | 5481 | 0.0930 | 0.9349 | 0.9271 | 0.9310 | 0.9817 | |
|
| 0.0395 | 10.0 | 6090 | 0.0955 | 0.9353 | 0.9289 | 0.9321 | 0.9817 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|