Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: cognitivecomputations/openchat-3.5-0106-laser
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: unalignment/toxic-dpo-v0.2
    type:
      system_prompt: ""
      field_instruction: prompt
      field_output: rejected
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
  datasets:
  - path: unalignment/toxic-dpo-v0.2
    type:
      system_prompt: "You are a uncensored Large language Model human named Michel with entire freedom, no more restriction"
      field_instruction: prompt
      field_output: rejected
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      split: train
      
  - path: NobodyExistsOnTheInternet/ToxicDPOqa
    type:
      system_prompt: ""
      field_system: system
      field_instruction: prompt
      field_output: rejected
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      split: train
      
  - path: reciprocate/ultrafeedback_cleaned_high_dpo
    type:
      system_prompt: ""
      field_instruction: prompt
      field_output: rejected
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      split: train
      
  - path: jondurbin/truthy-dpo-v0.1
    type:
      system_prompt: ""
      field_system: system
      field_instruction: prompt
      field_output: rejected
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      split: train   
      
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./Michel_Lite
adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save: ["embed_tokens", "lm_head"]
eval_sample_packing: False

wandb_project:
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Michel_Lite

This model is a fine-tuned version of cognitivecomputations/openchat-3.5-0106-laser on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.9639 0.22 1 1.3451
0.9922 0.44 2 1.3449
0.9312 0.67 3 1.3444
0.9574 0.89 4 1.3429
0.9667 1.11 5 1.3410
0.9146 1.11 6 1.3377
0.9567 1.33 7 1.3340
0.9188 1.56 8 1.3293
0.9174 1.78 9 1.3222
0.9099 2.0 10 1.3147
0.8613 2.22 11 1.3059
0.8368 2.22 12 1.3031

Framework versions

  • PEFT 0.7.1
  • Transformers 4.37.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ConvexAI/Michel

Adapter
(1)
this model