metadata
base_model: UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3
datasets:
- synthetic_data_mistral-7b-instruct-expert-iteration-iter3_score
tags:
- alignment-handbook
- generated_from_trainer
- autoquant
- gptq
model-index:
- name: Mistral7B-PairRM-SPPO-Iter3
results: []
Mistral-7B-Instruct-EI-Iter3
This model is a GPTQ version of UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3
Created with AutoQuant
Model description
I like the GPTQ format, this is 8bit, GROUP_SIZE 32.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6652 | 1.0 | 106 | 0.4722 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1