Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Metric
all 0.6569

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-13classes-multi_label")
# Run inference
preds = model("my dad had huge ones..so they may be real..")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 25.8891 1681

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (1.752e-05, 1.752e-05)
  • head_learning_rate: 1.752e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 30
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.3059 -
0.0185 50 0.3597 -
0.0370 100 0.272 -
0.0555 150 0.2282 -
0.0739 200 0.2413 -
0.0924 250 0.2239 -
0.1109 300 0.2447 -
0.1294 350 0.1574 -
0.1479 400 0.1873 -
0.1664 450 0.1537 -
0.1848 500 0.1661 -
0.2033 550 0.1692 -
0.2218 600 0.1105 -
0.2403 650 0.1316 -
0.2588 700 0.1018 -
0.2773 750 0.1148 -
0.2957 800 0.0588 -
0.3142 850 0.2385 -
0.3327 900 0.0302 -
0.3512 950 0.0714 -
0.3697 1000 0.1587 -
0.3882 1050 0.1479 -
0.4067 1100 0.0897 -
0.4251 1150 0.064 -
0.4436 1200 0.0774 -
0.4621 1250 0.0318 -
0.4806 1300 0.1231 -
0.4991 1350 0.0983 -
0.5176 1400 0.1537 -
0.5360 1450 0.1382 -
0.5545 1500 0.1244 -
0.5730 1550 0.1169 -
0.5915 1600 0.0185 -
0.6100 1650 0.1368 -
0.6285 1700 0.0678 -
0.6470 1750 0.0827 -
0.6654 1800 0.028 -
0.6839 1850 0.0655 -
0.7024 1900 0.1099 -
0.7209 1950 0.0508 -
0.7394 2000 0.086 -
0.7579 2050 0.1087 -
0.7763 2100 0.0764 -
0.7948 2150 0.0646 -
0.8133 2200 0.0793 -
0.8318 2250 0.0678 -
0.8503 2300 0.0538 -
0.8688 2350 0.0495 -
0.8872 2400 0.0651 -
0.9057 2450 0.0966 -
0.9242 2500 0.1726 -
0.9427 2550 0.0491 -
0.9612 2600 0.043 -
0.9797 2650 0.0807 -
0.9982 2700 0.0905 -
1.0166 2750 0.0841 -
1.0351 2800 0.0735 -
1.0536 2850 0.0508 -
1.0721 2900 0.082 -
1.0906 2950 0.085 -
1.1091 3000 0.0412 -
1.1275 3050 0.0274 -
1.1460 3100 0.1012 -
1.1645 3150 0.0269 -
1.1830 3200 0.0377 -
1.2015 3250 0.0854 -
1.2200 3300 0.0854 -
1.2384 3350 0.0682 -
1.2569 3400 0.038 -
1.2754 3450 0.1073 -
1.2939 3500 0.0841 -
1.3124 3550 0.1024 -
1.3309 3600 0.0636 -
1.3494 3650 0.0821 -
1.3678 3700 0.0742 -
1.3863 3750 0.0504 -
1.4048 3800 0.1198 -
1.4233 3850 0.0233 -
1.4418 3900 0.0659 -
1.4603 3950 0.0252 -
1.4787 4000 0.0772 -
1.4972 4050 0.0466 -
1.5157 4100 0.0771 -
1.5342 4150 0.0489 -
1.5527 4200 0.0273 -
1.5712 4250 0.0335 -
1.5896 4300 0.0733 -
1.6081 4350 0.0323 -
1.6266 4400 0.0358 -
1.6451 4450 0.0252 -
1.6636 4500 0.078 -
1.6821 4550 0.0137 -
1.7006 4600 0.0858 -
1.7190 4650 0.0377 -
1.7375 4700 0.0607 -
1.7560 4750 0.0438 -
1.7745 4800 0.0501 -
1.7930 4850 0.0682 -
1.8115 4900 0.0571 -
1.8299 4950 0.0144 -
1.8484 5000 0.0518 -
1.8669 5050 0.0388 -
1.8854 5100 0.0685 -
1.9039 5150 0.0522 -
1.9224 5200 0.0518 -
1.9409 5250 0.0649 -
1.9593 5300 0.083 -
1.9778 5350 0.0652 -
1.9963 5400 0.0907 -
2.0148 5450 0.0767 -
2.0333 5500 0.0825 -
2.0518 5550 0.0818 -
2.0702 5600 0.0364 -
2.0887 5650 0.134 -
2.1072 5700 0.0379 -
2.1257 5750 0.1066 -
2.1442 5800 0.1288 -
2.1627 5850 0.0527 -
2.1811 5900 0.0343 -
2.1996 5950 0.0766 -
2.2181 6000 0.0862 -
2.2366 6050 0.0661 -
2.2551 6100 0.069 -
2.2736 6150 0.0429 -
2.2921 6200 0.0546 -
2.3105 6250 0.1237 -
2.3290 6300 0.0337 -
2.3475 6350 0.0616 -
2.3660 6400 0.0833 -
2.3845 6450 0.1074 -
2.4030 6500 0.0424 -
2.4214 6550 0.033 -
2.4399 6600 0.0933 -
2.4584 6650 0.0434 -
2.4769 6700 0.0328 -
2.4954 6750 0.0553 -
2.5139 6800 0.0557 -
2.5323 6850 0.0861 -
2.5508 6900 0.0294 -
2.5693 6950 0.0521 -
2.5878 7000 0.1529 -
2.6063 7050 0.055 -
2.6248 7100 0.0522 -
2.6433 7150 0.0715 -
2.6617 7200 0.0524 -
2.6802 7250 0.0469 -
2.6987 7300 0.1064 -
2.7172 7350 0.0485 -
2.7357 7400 0.0526 -
2.7542 7450 0.1063 -
2.7726 7500 0.0549 -
2.7911 7550 0.041 -
2.8096 7600 0.0312 -
2.8281 7650 0.0249 -
2.8466 7700 0.0807 -
2.8651 7750 0.0268 -
2.8835 7800 0.0306 -
2.9020 7850 0.0655 -
2.9205 7900 0.1469 -
2.9390 7950 0.0454 -
2.9575 8000 0.0754 -
2.9760 8050 0.0587 -
2.9945 8100 0.0452 -

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.0
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.14.6
  • Tokenizers: 0.14.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for CrisisNarratives/setfit-13classes-multi_label

Finetuned
(247)
this model

Evaluation results