metadata
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/NeuralMaxime-7B-slerp
- mlabonne/Monarch-7B
- eren23/ogno-monarch-jaskier-merge-7b
- CultriX/NeuralTrix-bf16
base_model:
- Kukedlc/NeuralMaxime-7B-slerp
- mlabonne/Monarch-7B
- eren23/ogno-monarch-jaskier-merge-7b
- CultriX/NeuralTrix-bf16
NeMoTrix-v1
NeMoTrix-v1 is a merge of the following models using LazyMergekit:
- Kukedlc/NeuralMaxime-7B-slerp
- mlabonne/Monarch-7B
- eren23/ogno-monarch-jaskier-merge-7b
- CultriX/NeuralTrix-bf16
🧩 Configuration
models:
- model: CultriX/MonaTrix-v4
# No parameters necessary for base model
- model: Kukedlc/NeuralMaxime-7B-slerp
parameters:
weight: 0.36
density: 0.65
- model: mlabonne/Monarch-7B
parameters:
weight: 0.34
density: 0.6
- model: eren23/ogno-monarch-jaskier-merge-7b
parameters:
weight: 0.3
density: 0.6
- model: CultriX/NeuralTrix-bf16
parameters:
weight: 0.4
density: 0.7
merge_method: dare_ties
base_model: CultriX/MonaTrix-v4
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "CultriX/NeMoTrix-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])