project-ocr
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9877
- Precision: 0.7516
- Recall: 0.8039
- F1: 0.7769
- Accuracy: 0.8103
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.83 | 50 | 2.6184 | 0.4355 | 0.5404 | 0.4823 | 0.4338 |
No log | 1.67 | 100 | 1.8766 | 0.5912 | 0.6018 | 0.5964 | 0.5620 |
No log | 2.5 | 150 | 1.6165 | 0.5737 | 0.6347 | 0.6027 | 0.6150 |
No log | 3.33 | 200 | 1.4317 | 0.5732 | 0.6737 | 0.6194 | 0.6944 |
No log | 4.17 | 250 | 1.2787 | 0.6190 | 0.7126 | 0.6625 | 0.7347 |
No log | 5.0 | 300 | 1.1632 | 0.6729 | 0.7560 | 0.7120 | 0.7759 |
No log | 5.83 | 350 | 1.0990 | 0.6980 | 0.7665 | 0.7306 | 0.7857 |
No log | 6.67 | 400 | 1.0327 | 0.7125 | 0.7792 | 0.7444 | 0.7946 |
No log | 7.5 | 450 | 0.9994 | 0.7526 | 0.8016 | 0.7764 | 0.8065 |
1.6589 | 8.33 | 500 | 0.9877 | 0.7516 | 0.8039 | 0.7769 | 0.8103 |
Framework versions
- Transformers 4.27.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 76
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Precision on cord-layoutlmv3test set self-reported0.752
- Recall on cord-layoutlmv3test set self-reported0.804
- F1 on cord-layoutlmv3test set self-reported0.777
- Accuracy on cord-layoutlmv3test set self-reported0.810