|
--- |
|
license: mit |
|
datasets: |
|
- DAMO-NLP-SG/LongCorpus-2.5B |
|
--- |
|
|
|
# CLEX: Continuous Length Extrapolation for Large Language Models |
|
This repo stores the checkpoint of CLEX-Mixtral-8x7B-Chat-32K. |
|
|
|
|
|
## Features and Highlights of CLEX |
|
![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf) |
|
|
|
- **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required. |
|
- **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)). |
|
- **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation. |
|
|
|
If you have any questions, feel free to contact us. (Emails: guanzzh.chen@gmail.com, lixin4ever@gmail.com) |
|
|
|
## Model Zoo |
|
<div align="center"> |
|
|
|
| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | HF Repo | |
|
|:-----|:-----|:-----------|:-----------|:-----------|:-----------|:------:| |
|
| CLEX-LLaMA-2-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K) | |
|
| CLEX-LLaMA-2-7B-Chat-16K | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-Chat-16K) | |
|
| CLEX-LLaMA-2-7B-64K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 64k | 256K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K) | |
|
| CLEX-Phi-2-32K | base | Phi-2-2.7B | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | 128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Phi-2-32K) | |
|
| CLEX-Mixtral-8x7B-32K | base | Mixtral-8x7B-v0.1 | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-32K) | |
|
| **CLEX-Mixtral-8x7B-Chat-32k** (this checkpoint) | chat | CLEX-Mixtral-8x7B-32K | [Ultrachat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K) | |
|
</div> |
|
|
|
|
|
## Usage |
|
|
|
|
|
```bash |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
inputs = tokenizer("What is CLEX?", return_tensors="pt") |
|
sample = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(sample[0])) |
|
``` |
|
|
|
|
|
|
|
|
|
## Evaluation |
|
|
|
|
|
## InfiniteBench |
|
We also evaluate CLEX-Mixtral-8x7B-Chat-32k on [InfiniteBench](https://github.com/OpenBMB/InfiniteBench), which is a 128k-length benchmark covering various tasks. We compare our CLEX-Mixtral-8x7B-Chat-32k with GPT-4, Claude, KimiChat, and vanilla Mixtral-8x7B. |
|
|
|
| Task Name | GPT-4 | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | CLEX-Mixtral-8x7B-Chat-32k | Mixtral-8x7B-Instruct-v0.1 | |
|
| ------------------- | ------ | --------------- | --------- | -------- | -------------------------- | -------------------------- | |
|
| Retrieve.PassKey | 100% | 92.71% | 98.14% | 97.80% | 99.72% | 96.78% | |
|
| **Retrieve.Number** | 100% | 56.61% | 95.42% | 98.14% | 76.10% | 76.61% | |
|
| **Retrieve.KV** | 89.00% | < 5% | 53.60% | 65.40% | <5% | <5% | |
|
| En.Sum | 14.73% | 9.09% | 17.93% | 14.45% | 15.48% | 14.3% | |
|
| En.QA | 22.22% | 9.55% | 16.52% | 11.97% | 15.52% | 16.81% | |
|
| En.MC | 67.25% | 27.95% | 72.49% | 62.88% | 58.96% | 56.77% | |
|
| En.Dia | 8.50% | 7.50% | 11.50% | 46.50% | 9% | <5% | |
|
| Code.Debug | 39.59% | < 5% | 18.02% | < 5% | 21.32% | <5% | |
|
| Code.Run | 23.25% | < 5% | < 5% | < 5% | < 5% | <5% | |
|
| Math.Calc | < 5% | < 5% | < 5% | < 5% | < 5% | <5% | |
|
| Math.Find | 60.00% | 17.14% | 12.57% | 32.29% | 28% | 26.57% | |
|
|
|
|
|
|
|
## Citation |
|
If you find our project useful, hope you can star our repo and cite our paper as follows: |
|
``` |
|
@article{damonlpsg2023clex, |
|
author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong}, |
|
title = {CLEX: Continuous Length Extrapolation for Large Language Models}, |
|
year = 2023, |
|
journal = {arXiv preprint arXiv:2310.16450}, |
|
url = {https://arxiv.org/abs/2310.16450} |
|
} |
|
``` |