Edit model card

mt

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0345
  • Accuracy: 0.7947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 50000

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8769 0.39 500 2.3415 0.5941
2.3422 0.78 1000 2.0567 0.6324
2.1192 1.17 1500 1.8960 0.6535
1.9894 1.57 2000 1.7869 0.6695
1.8961 1.96 2500 1.7181 0.6796
1.8258 2.35 3000 1.6541 0.6893
1.7648 2.74 3500 1.5881 0.6996
1.7159 3.13 4000 1.5544 0.7065
1.6763 3.52 4500 1.5229 0.7101
1.6338 3.92 5000 1.4794 0.7166
1.6 4.31 5500 1.4452 0.7222
1.5832 4.7 6000 1.4302 0.7250
1.5532 5.09 6500 1.4013 0.7308
1.5247 5.48 7000 1.3956 0.7325
1.5103 5.87 7500 1.3598 0.7367
1.4866 6.26 8000 1.3331 0.7401
1.468 6.66 8500 1.3266 0.7428
1.4402 7.05 9000 1.3119 0.7457
1.4255 7.44 9500 1.2967 0.7481
1.4236 7.83 10000 1.2779 0.7516
1.41 8.22 10500 1.2598 0.7544
1.3994 8.61 11000 1.2677 0.7539
1.3809 9.01 11500 1.2334 0.7579
1.3689 9.4 12000 1.2468 0.7581
1.3637 9.79 12500 1.2349 0.7588
1.3587 10.18 13000 1.2157 0.7625
1.3397 10.57 13500 1.2055 0.7630
1.3347 10.96 14000 1.1968 0.7654
1.315 11.35 14500 1.1955 0.7652
1.3246 11.75 15000 1.1886 0.7674
1.3078 12.14 15500 1.1942 0.7660
1.2925 12.53 16000 1.1850 0.7678
1.3004 12.92 16500 1.1747 0.7692
1.2911 13.31 17000 1.1591 0.7719
1.2786 13.7 17500 1.1602 0.7734
1.2771 14.1 18000 1.1597 0.7717
1.2774 14.49 18500 1.1547 0.7724
1.2652 14.88 19000 1.1403 0.7751
1.262 15.27 19500 1.1397 0.7754
1.2595 15.66 20000 1.1325 0.7778
1.2544 16.05 20500 1.1385 0.7759
1.2424 16.44 21000 1.1291 0.7774
1.2361 16.84 21500 1.1338 0.7782
1.2325 17.23 22000 1.1081 0.7818
1.236 17.62 22500 1.1161 0.7789
1.2284 18.01 23000 1.1150 0.7809
1.2267 18.4 23500 1.1001 0.7831
1.2151 18.79 24000 1.1054 0.7829
1.2197 19.19 24500 1.1096 0.7814
1.2226 19.58 25000 1.1098 0.7815
1.2101 19.97 25500 1.0962 0.7840
1.2102 20.36 26000 1.0920 0.7847
1.2003 20.75 26500 1.0828 0.7863
1.1912 21.14 27000 1.0886 0.7854
1.1987 21.53 27500 1.0860 0.7860
1.2072 21.93 28000 1.0812 0.7859
1.1894 22.32 28500 1.0816 0.7858
1.2031 22.71 29000 1.0771 0.7874
1.1819 23.1 29500 1.0674 0.7881
1.185 23.49 30000 1.0761 0.7879
1.1873 23.88 30500 1.0697 0.7892
1.1793 24.28 31000 1.0706 0.7884
1.1793 24.67 31500 1.0622 0.7899
1.1748 25.06 32000 1.0630 0.7894
1.1701 25.45 32500 1.0643 0.7889
1.1678 25.84 33000 1.0567 0.7906
1.177 26.23 33500 1.0660 0.7886
1.1749 26.62 34000 1.0652 0.7911
1.1623 27.02 34500 1.0436 0.7924
1.1647 27.41 35000 1.0769 0.7873
1.1692 27.8 35500 1.0474 0.7918
1.1572 28.19 36000 1.0454 0.7922
1.1612 28.58 36500 1.0554 0.7916
1.1626 28.97 37000 1.0492 0.7918
1.1613 29.37 37500 1.0586 0.7909
1.146 29.76 38000 1.0470 0.7918
1.1558 30.15 38500 1.0530 0.7921
1.1553 30.54 39000 1.0474 0.7910
1.1543 30.93 39500 1.0446 0.7920
1.1523 31.32 40000 1.0521 0.7916
1.1529 31.71 40500 1.0489 0.7923
1.1528 32.11 41000 1.0407 0.7930
1.1532 32.5 41500 1.0386 0.7943
1.1415 32.89 42000 1.0489 0.7913
1.1509 33.28 42500 1.0355 0.7940
1.1484 33.67 43000 1.0375 0.7931
1.1434 34.06 43500 1.0431 0.7928
1.1464 34.46 44000 1.0348 0.7949
1.1394 34.85 44500 1.0514 0.7927
1.1418 35.24 45000 1.0429 0.7933
1.1453 35.63 45500 1.0423 0.7942
1.1411 36.02 46000 1.0358 0.7949
1.1434 36.41 46500 1.0308 0.7954
1.1392 36.81 47000 1.0326 0.7950
1.137 37.2 47500 1.0315 0.7948
1.14 37.59 48000 1.0406 0.7937
1.142 37.98 48500 1.0464 0.7933
1.1404 38.37 49000 1.0423 0.7933
1.1412 38.76 49500 1.0363 0.7950
1.143 39.15 50000 1.0355 0.7950

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for DGurgurov/maltese-wiki-lang-adapter

Finetuned
(512)
this model