DMetaSoul/sbert-chinese-dtm-domain-v1
此模型基于 bert-base-chinese 版本 BERT 模型,在 OPPO 手机助手小布对话匹配数据集(BUSTM)上进行训练调优,适用于开放领域的对话匹配场景(偏口语化),比如:
- 哪有好玩的 VS. 这附近有什么好玩的地方
- 定时25分钟 VS. 计时半个小时
- 我要听王琦的歌 VS. 放一首王琦的歌
注:此模型的轻量化版本,也已经开源啦!
Usage
1. Sentence-Transformers
通过 sentence-transformers 框架来使用该模型,首先进行安装:
pip install -U sentence-transformers
然后使用下面的代码来载入该模型并进行文本表征向量的提取:
from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-dtm-domain-v1')
embeddings = model.encode(sentences)
print(embeddings)
2. HuggingFace Transformers
如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation
该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数:
csts_dev | csts_test | afqmc | lcqmc | bqcorpus | pawsx | xiaobu | |
---|---|---|---|---|---|---|---|
sbert-chinese-dtm-domain-v1 | 78.36% | 74.46% | 32.18% | 75.95% | 44.01% | 14.50% | 66.85% |
Citing & Authors
E-mail: xiaowenbin@dmetasoul.com
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.