|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- semantic-search |
|
- chinese |
|
--- |
|
|
|
# DMetaSoul/sbert-chinese-qmc-domain-v1 |
|
|
|
此模型是基于之前开源[问题匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-domain-v1)的蒸馏轻量化版本(仅含4层 BERT),适用于**开放领域的问题匹配**场景,比如: |
|
|
|
|
|
- 洗澡用什么香皂好?vs. 洗澡用什么香皂好 |
|
- 大连哪里拍婚纱照好点? vs. 大连哪里拍婚纱照比较好 |
|
- 银行卡怎样挂失?vs. 银行卡丢了怎么挂失啊? |
|
|
|
离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 4% 左右(具体结果详见下文评估小节)。 |
|
|
|
# Usage |
|
|
|
## 1. Sentence-Transformers |
|
|
|
通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
然后使用下面的代码来载入该模型并进行文本表征向量的提取: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] |
|
|
|
model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-domain-v1') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## 2. HuggingFace Transformers |
|
|
|
如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') |
|
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation |
|
|
|
这里主要跟蒸馏前对应的 teacher 模型作了对比 |
|
|
|
*性能:* |
|
|
|
| | Teacher | Student | Gap | |
|
| ---------- | --------------------- | ------------------- | ----- | |
|
| Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | |
|
| Cost | 23s | 12s | -47% | |
|
| Latency | 38ms | 20ms | -47% | |
|
| Throughput | 421 sentence/s | 791 sentence/s | 1.9x | |
|
|
|
*精度:* |
|
|
|
| | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | |
|
| -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | |
|
| **Teacher** | 80.90% | 76.62% | 34.51% | 77.05% | 52.95% | 12.97% | 59.47% | 56.35% | |
|
| **Student** | 79.89% | 76.34% | 27.59% | 69.26% | 49.40% | 9.06% | 53.52% | 52.15% | |
|
| **Gap** (abs.) | - | - | - | - | - | - | - | -4.2% | |
|
|
|
*基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* |
|
|
|
## Citing & Authors |
|
|
|
E-mail: xiaowenbin@dmetasoul.com |