Classification: Emotions
Collection
Models for multi-label classification
โข
3 items
โข
Updated
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 185 | 0.5983 | 0.0330 | 0.5064 | 0.0162 |
No log | 2.0 | 370 | 0.3939 | 0.6104 | 0.7317 | 0.4649 |
0.4638 | 3.0 | 555 | 0.3227 | 0.7572 | 0.8154 | 0.5568 |
0.4638 | 4.0 | 740 | 0.2852 | 0.7902 | 0.8412 | 0.5784 |
0.4638 | 5.0 | 925 | 0.2720 | 0.7982 | 0.8382 | 0.6270 |
0.1877 | 6.0 | 1110 | 0.2795 | 0.8144 | 0.8619 | 0.6541 |
0.1877 | 7.0 | 1295 | 0.2575 | 0.8147 | 0.8568 | 0.6541 |
0.1877 | 8.0 | 1480 | 0.2556 | 0.8204 | 0.8630 | 0.6595 |
0.0952 | 9.0 | 1665 | 0.2668 | 0.8321 | 0.8764 | 0.6703 |
0.0952 | 10.0 | 1850 | 0.2697 | 0.8335 | 0.8761 | 0.6703 |
Should you use our models in your work, please consider citing us as:
@article{BERTOLINI2024406,
title = {DReAMy: a library for the automatic analysis and annotation of dream reports with multilingual large language models},
journal = {Sleep Medicine},
volume = {115},
pages = {406-407},
year = {2024},
note = {Abstracts from the 17th World Sleep Congress},
issn = {1389-9457},
doi = {https://doi.org/10.1016/j.sleep.2023.11.1092},
url = {https://www.sciencedirect.com/science/article/pii/S1389945723015186},
author = {L. Bertolini and A. Michalak and J. Weeds}
}