Classification: Emotions
Collection
Models for multi-label classification
β’
3 items
β’
Updated
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set: Best result (loaded model)
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 185 | 0.5949 | 0.0 | 0.5 | 0.0 |
No log | 2.0 | 370 | 0.3825 | 0.6052 | 0.7481 | 0.4595 |
0.476 | 3.0 | 555 | 0.2891 | 0.7403 | 0.8010 | 0.5730 |
0.476 | 4.0 | 740 | 0.2604 | 0.8425 | 0.8852 | 0.7081 |
0.476 | 5.0 | 925 | 0.2484 | 0.8504 | 0.8932 | 0.6649 |
0.1457 | 6.0 | 1110 | 0.3092 | 0.8352 | 0.8909 | 0.6703 |
0.1457 | 7.0 | 1295 | 0.2882 | 0.8546 | 0.8950 | 0.6919 |
0.1457 | 8.0 | 1480 | 0.3099 | 0.8549 | 0.9014 | 0.6865 |
0.0691 | 9.0 | 1665 | 0.3080 | 0.8548 | 0.9019 | 0.6811 |
0.0691 | 10.0 | 1850 | 0.2942 | 0.8621 | 0.9069 | 0.6973 |
Should use our models in your work, please consider citing us as:
@article{BERTOLINI2024406,
title = {DReAMy: a library for the automatic analysis and annotation of dream reports with multilingual large language models},
journal = {Sleep Medicine},
volume = {115},
pages = {406-407},
year = {2024},
note = {Abstracts from the 17th World Sleep Congress},
issn = {1389-9457},
doi = {https://doi.org/10.1016/j.sleep.2023.11.1092},
url = {https://www.sciencedirect.com/science/article/pii/S1389945723015186},
author = {L. Bertolini and A. Michalak and J. Weeds}
}