BraylonDash's picture
End of training
b02a721 verified
metadata
license: mit
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
base_model: microsoft/phi-2
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: phi-2-gpo-test-longest-iter-4
    results: []

phi-2-gpo-test-longest-iter-4

This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-test-longest-iter-3 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0107
  • Rewards/chosen: -0.0000
  • Rewards/rejected: -0.0005
  • Rewards/accuracies: 0.5085
  • Rewards/margins: 0.0005
  • Logps/rejected: -278.6688
  • Logps/chosen: -306.3621
  • Logits/rejected: 0.0917
  • Logits/chosen: -0.0055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0105 1.6 100 0.0108 0.0006 0.0007 0.4945 -0.0001 -278.5431 -306.2985 0.0955 -0.0024

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2