zephyr-7b-gpo-iter0 / README.md
lole25's picture
End of training
60088fc verified
metadata
license: apache-2.0
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: zephyr-7b-gpo-iter0
    results: []

zephyr-7b-gpo-iter0

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0258
  • Rewards/chosen: -0.0580
  • Rewards/rejected: -0.0061
  • Rewards/accuracies: 0.3380
  • Rewards/margins: -0.0519
  • Logps/rejected: -249.4468
  • Logps/chosen: -274.3866
  • Logits/rejected: -2.2108
  • Logits/chosen: -2.4070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0008 0.2 100 0.0019 -0.0111 -0.0138 0.5300 0.0027 -250.2170 -269.6990 -2.2026 -2.4007
0.0006 0.4 200 0.0029 -0.0237 -0.0230 0.4910 -0.0007 -251.1392 -270.9541 -2.2051 -2.4034
0.001 0.6 300 0.0019 -0.0120 -0.0142 0.5310 0.0022 -250.2602 -269.7912 -2.2008 -2.3984
0.0011 0.8 400 0.0023 -0.0201 -0.0211 0.5010 0.0011 -250.9541 -270.5950 -2.1993 -2.3968
0.0008 1.0 500 0.0021 -0.0170 -0.0189 0.5065 0.0019 -250.7260 -270.2850 -2.1982 -2.3960
0.044 1.2 600 0.0091 -0.0053 0.0198 0.3600 -0.0252 -246.8548 -269.1194 -2.1940 -2.3899
0.0682 1.4 700 0.0191 -0.0345 0.0086 0.3450 -0.0431 -247.9818 -272.0423 -2.2035 -2.3992
0.0505 1.6 800 0.0237 -0.0497 -0.0001 0.3405 -0.0496 -248.8542 -273.5587 -2.2094 -2.4056
0.0243 1.8 900 0.0259 -0.0581 -0.0062 0.3340 -0.0519 -249.4570 -274.3967 -2.2117 -2.4081
0.0697 2.0 1000 0.0258 -0.0580 -0.0061 0.3380 -0.0519 -249.4468 -274.3866 -2.2108 -2.4070

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.2