Dabid's picture
Update README.md
1a58228
metadata
license: gpl-3.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: test2
    results: []
pipeline_tag: text-classification

test2

This model is a fine-tuned version of jcblaise/bert-tagalog-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4185
  • Accuracy: 0.8669
  • Precision: 0.8249
  • Recall: 0.8612
  • F1: 0.8426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 172 0.3674 0.8444 0.8014 0.8295 0.8152
No log 2.0 344 0.3508 0.8542 0.8235 0.8243 0.8239
0.2992 3.0 516 0.3643 0.8564 0.8596 0.7803 0.8181
0.2992 4.0 688 0.3639 0.8622 0.8155 0.8620 0.8381
0.2992 5.0 860 0.3803 0.864 0.8316 0.8418 0.8367
0.1733 6.0 1032 0.3969 0.8702 0.8352 0.8550 0.8450
0.1733 7.0 1204 0.4185 0.8669 0.8249 0.8612 0.8426

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Tokenizers 0.13.2