DataBindu's picture
End of training
3430fec
|
raw
history blame
2.43 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes-merged
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7268518518518519

swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes-merged

This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8626
  • Accuracy: 0.7269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8355 0.98 15 2.5831 0.3333
1.9292 1.97 30 1.6850 0.5046
1.4121 2.95 45 1.2324 0.5972
1.0121 4.0 61 1.0345 0.6852
0.854 4.98 76 0.9663 0.6806
0.701 5.97 91 0.9587 0.6991
0.5956 6.95 106 0.8626 0.7269
0.5713 7.87 120 0.8645 0.7222

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cpu
  • Datasets 2.14.4
  • Tokenizers 0.13.3