File size: 30,854 Bytes
d049fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930d2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d049fa4
930d2e8
 
 
 
 
 
d049fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930d2e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
---
base_model: mistralai/Mistral-Nemo-Base-2407
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
extra_gated_description: If you want to learn more about how we process your personal
  data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
model-index:
- name: Mistral-Nemo-Instruct-2407
  results:
  - task:
      type: squad_answerable-judge
    dataset:
      name: squad_answerable
      type: multi-choices
    metrics:
    - type: judge_match
      value: '0.685'
      args:
        results:
          squad_answerable-judge:
            exact_match,strict_match: 0.6852522530110334
            exact_match_stderr,strict_match: 0.004262305820311226
            alias: squad_answerable-judge
          context_has_answer-judge:
            exact_match,strict_match: 0.7906976744186046
            exact_match_stderr,strict_match: 0.04412480456048906
            alias: context_has_answer-judge
        group_subtasks:
          context_has_answer-judge: []
          squad_answerable-judge: []
        configs:
          context_has_answer-judge:
            task: context_has_answer-judge
            group: dg
            dataset_path: DataGuard/eval-multi-choices
            dataset_name: context_has_answer_judge
            test_split: test
            doc_to_text: '<s>[INST]You are asked to determine if a question has the
              answer in the context, and answer with a simple Yes or No.


              Example:

              Question: How is the weather today? Context: How is the traffic today?
              It is horrible. Does the question have the answer in the Context?

              Answer: No

              Question: How is the weather today? Context: Is the weather good today?
              Yes, it is sunny. Does the question have the answer in the Context?

              Answer: Yes


              Question: {{question}}

              Context: {{similar_question}} {{similar_answer}}

              Does the question have the answer in the Context?

              [/INST]'
            doc_to_target: '{{''Yes'' if is_relevant in [''Yes'', 1] else ''No''}}'
            description: ''
            target_delimiter: ' '
            fewshot_delimiter: '


              '
            metric_list:
            - metric: exact_match
            output_type: generate_until
            generation_kwargs:
              until:
              - <|im_end|>
              do_sample: false
              temperature: 0.3
            repeats: 1
            filter_list:
            - name: strict_match
              filter:
              - function: regex
                regex_pattern: Yes|No
                group_select: -1
              - function: take_first
            should_decontaminate: false
          squad_answerable-judge:
            task: squad_answerable-judge
            group: dg
            dataset_path: DataGuard/eval-multi-choices
            dataset_name: squad_answerable_judge
            test_split: test
            doc_to_text: '<s>[INST]You are asked to determine if a question has the
              answer in the context, and answer with a simple Yes or No.


              Example:

              Question: How is the weather today? Context: The traffic is horrible.
              Does the question have the answer in the Context?

              Answer: No

              Question: How is the weather today? Context: The weather is good. Does
              the question have the answer in the Context?

              Answer: Yes


              Question: {{question}}

              Context: {{context}}

              Does the question have the answer in the Context?

              [/INST]'
            doc_to_target: '{{''Yes'' if is_relevant in [''Yes'', 1] else ''No''}}'
            description: ''
            target_delimiter: ' '
            fewshot_delimiter: '


              '
            metric_list:
            - metric: exact_match
            output_type: generate_until
            generation_kwargs:
              until:
              - <|im_end|>
              do_sample: false
              temperature: 0.3
            repeats: 1
            filter_list:
            - name: strict_match
              filter:
              - function: regex
                regex_pattern: Yes|No
                group_select: -1
              - function: take_first
            should_decontaminate: false
        versions:
          context_has_answer-judge: Yaml
          squad_answerable-judge: Yaml
        n-shot: {}
        config:
          model: vllm
          model_args: pretrained=mistralai/Mistral-Nemo-Instruct-2407,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.8,max_model_len=2048,trust_remote_code=True
          batch_size: auto
          batch_sizes: []
          bootstrap_iters: 100000
        git_hash: cddf85d
        pretty_env_info: 'PyTorch version: 2.4.0+cu121

          Is debug build: False

          CUDA used to build PyTorch: 12.1

          ROCM used to build PyTorch: N/A


          OS: Ubuntu 22.04.3 LTS (x86_64)

          GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

          Clang version: Could not collect

          CMake version: version 3.25.0

          Libc version: glibc-2.35


          Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit
          runtime)

          Python platform: Linux-5.4.0-149-generic-x86_64-with-glibc2.35

          Is CUDA available: True

          CUDA runtime version: 11.8.89

          CUDA_MODULE_LOADING set to: LAZY

          GPU models and configuration: GPU 0: NVIDIA L40

          Nvidia driver version: 535.54.03

          cuDNN version: Could not collect

          HIP runtime version: N/A

          MIOpen runtime version: N/A

          Is XNNPACK available: True


          CPU:

          Architecture:                    x86_64

          CPU op-mode(s):                  32-bit, 64-bit

          Address sizes:                   48 bits physical, 48 bits virtual

          Byte Order:                      Little Endian

          CPU(s):                          256

          On-line CPU(s) list:             0-254

          Off-line CPU(s) list:            255

          Vendor ID:                       AuthenticAMD

          Model name:                      AMD EPYC 7773X 64-Core Processor

          CPU family:                      25

          Model:                           1

          Thread(s) per core:              2

          Core(s) per socket:              64

          Socket(s):                       2

          Stepping:                        2

          Frequency boost:                 enabled

          CPU max MHz:                     2200.0000

          CPU min MHz:                     0.0000

          BogoMIPS:                        4400.14

          Flags:                           fpu vme de pse tsc msr pae mce cx8 apic
          sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
          mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc
          cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1
          sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy
          svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit
          wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3
          cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase
          bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni
          xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local
          clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale
          vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload
          vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

          Virtualization:                  AMD-V

          L1d cache:                       4 MiB (128 instances)

          L1i cache:                       4 MiB (128 instances)

          L2 cache:                        64 MiB (128 instances)

          L3 cache:                        1.5 GiB (16 instances)

          NUMA node(s):                    16

          NUMA node0 CPU(s):               0-7,128-135

          NUMA node1 CPU(s):               8-15,136-143

          NUMA node2 CPU(s):               16-23,144-151

          NUMA node3 CPU(s):               24-31,152-159

          NUMA node4 CPU(s):               32-39,160-167

          NUMA node5 CPU(s):               40-47,168-175

          NUMA node6 CPU(s):               48-55,176-183

          NUMA node7 CPU(s):               56-63,184-191

          NUMA node8 CPU(s):               64-71,192-199

          NUMA node9 CPU(s):               72-79,200-207

          NUMA node10 CPU(s):              80-87,208-215

          NUMA node11 CPU(s):              88-95,216-223

          NUMA node12 CPU(s):              96-103,224-231

          NUMA node13 CPU(s):              104-111,232-239

          NUMA node14 CPU(s):              112-119,240-247

          NUMA node15 CPU(s):              120-127,248-254

          Vulnerability Itlb multihit:     Not affected

          Vulnerability L1tf:              Not affected

          Vulnerability Mds:               Not affected

          Vulnerability Meltdown:          Not affected

          Vulnerability Mmio stale data:   Not affected

          Vulnerability Retbleed:          Not affected

          Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled
          via prctl and seccomp

          Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and
          __user pointer sanitization

          Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional,
          IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected

          Vulnerability Srbds:             Not affected

          Vulnerability Tsx async abort:   Not affected


          Versions of relevant libraries:

          [pip3] numpy==1.24.1

          [pip3] torch==2.4.0

          [pip3] torchaudio==2.0.2+cu118

          [pip3] torchvision==0.19.0

          [pip3] triton==3.0.0

          [conda] Could not collect'
        transformers_version: 4.44.1
  - task:
      type: context_has_answer-judge
    dataset:
      name: context_has_answer
      type: multi-choices
    metrics:
    - type: judge_match
      value: '0.791'
      args:
        results:
          squad_answerable-judge:
            exact_match,strict_match: 0.6852522530110334
            exact_match_stderr,strict_match: 0.004262305820311226
            alias: squad_answerable-judge
          context_has_answer-judge:
            exact_match,strict_match: 0.7906976744186046
            exact_match_stderr,strict_match: 0.04412480456048906
            alias: context_has_answer-judge
        group_subtasks:
          context_has_answer-judge: []
          squad_answerable-judge: []
        configs:
          context_has_answer-judge:
            task: context_has_answer-judge
            group: dg
            dataset_path: DataGuard/eval-multi-choices
            dataset_name: context_has_answer_judge
            test_split: test
            doc_to_text: '<s>[INST]You are asked to determine if a question has the
              answer in the context, and answer with a simple Yes or No.


              Example:

              Question: How is the weather today? Context: How is the traffic today?
              It is horrible. Does the question have the answer in the Context?

              Answer: No

              Question: How is the weather today? Context: Is the weather good today?
              Yes, it is sunny. Does the question have the answer in the Context?

              Answer: Yes


              Question: {{question}}

              Context: {{similar_question}} {{similar_answer}}

              Does the question have the answer in the Context?

              [/INST]'
            doc_to_target: '{{''Yes'' if is_relevant in [''Yes'', 1] else ''No''}}'
            description: ''
            target_delimiter: ' '
            fewshot_delimiter: '


              '
            metric_list:
            - metric: exact_match
            output_type: generate_until
            generation_kwargs:
              until:
              - <|im_end|>
              do_sample: false
              temperature: 0.3
            repeats: 1
            filter_list:
            - name: strict_match
              filter:
              - function: regex
                regex_pattern: Yes|No
                group_select: -1
              - function: take_first
            should_decontaminate: false
          squad_answerable-judge:
            task: squad_answerable-judge
            group: dg
            dataset_path: DataGuard/eval-multi-choices
            dataset_name: squad_answerable_judge
            test_split: test
            doc_to_text: '<s>[INST]You are asked to determine if a question has the
              answer in the context, and answer with a simple Yes or No.


              Example:

              Question: How is the weather today? Context: The traffic is horrible.
              Does the question have the answer in the Context?

              Answer: No

              Question: How is the weather today? Context: The weather is good. Does
              the question have the answer in the Context?

              Answer: Yes


              Question: {{question}}

              Context: {{context}}

              Does the question have the answer in the Context?

              [/INST]'
            doc_to_target: '{{''Yes'' if is_relevant in [''Yes'', 1] else ''No''}}'
            description: ''
            target_delimiter: ' '
            fewshot_delimiter: '


              '
            metric_list:
            - metric: exact_match
            output_type: generate_until
            generation_kwargs:
              until:
              - <|im_end|>
              do_sample: false
              temperature: 0.3
            repeats: 1
            filter_list:
            - name: strict_match
              filter:
              - function: regex
                regex_pattern: Yes|No
                group_select: -1
              - function: take_first
            should_decontaminate: false
        versions:
          context_has_answer-judge: Yaml
          squad_answerable-judge: Yaml
        n-shot: {}
        config:
          model: vllm
          model_args: pretrained=mistralai/Mistral-Nemo-Instruct-2407,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.8,max_model_len=2048,trust_remote_code=True
          batch_size: auto
          batch_sizes: []
          bootstrap_iters: 100000
        git_hash: cddf85d
        pretty_env_info: 'PyTorch version: 2.4.0+cu121

          Is debug build: False

          CUDA used to build PyTorch: 12.1

          ROCM used to build PyTorch: N/A


          OS: Ubuntu 22.04.3 LTS (x86_64)

          GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

          Clang version: Could not collect

          CMake version: version 3.25.0

          Libc version: glibc-2.35


          Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit
          runtime)

          Python platform: Linux-5.4.0-149-generic-x86_64-with-glibc2.35

          Is CUDA available: True

          CUDA runtime version: 11.8.89

          CUDA_MODULE_LOADING set to: LAZY

          GPU models and configuration: GPU 0: NVIDIA L40

          Nvidia driver version: 535.54.03

          cuDNN version: Could not collect

          HIP runtime version: N/A

          MIOpen runtime version: N/A

          Is XNNPACK available: True


          CPU:

          Architecture:                    x86_64

          CPU op-mode(s):                  32-bit, 64-bit

          Address sizes:                   48 bits physical, 48 bits virtual

          Byte Order:                      Little Endian

          CPU(s):                          256

          On-line CPU(s) list:             0-254

          Off-line CPU(s) list:            255

          Vendor ID:                       AuthenticAMD

          Model name:                      AMD EPYC 7773X 64-Core Processor

          CPU family:                      25

          Model:                           1

          Thread(s) per core:              2

          Core(s) per socket:              64

          Socket(s):                       2

          Stepping:                        2

          Frequency boost:                 enabled

          CPU max MHz:                     2200.0000

          CPU min MHz:                     0.0000

          BogoMIPS:                        4400.14

          Flags:                           fpu vme de pse tsc msr pae mce cx8 apic
          sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx
          mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc
          cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1
          sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy
          svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit
          wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3
          cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase
          bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni
          xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local
          clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale
          vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload
          vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

          Virtualization:                  AMD-V

          L1d cache:                       4 MiB (128 instances)

          L1i cache:                       4 MiB (128 instances)

          L2 cache:                        64 MiB (128 instances)

          L3 cache:                        1.5 GiB (16 instances)

          NUMA node(s):                    16

          NUMA node0 CPU(s):               0-7,128-135

          NUMA node1 CPU(s):               8-15,136-143

          NUMA node2 CPU(s):               16-23,144-151

          NUMA node3 CPU(s):               24-31,152-159

          NUMA node4 CPU(s):               32-39,160-167

          NUMA node5 CPU(s):               40-47,168-175

          NUMA node6 CPU(s):               48-55,176-183

          NUMA node7 CPU(s):               56-63,184-191

          NUMA node8 CPU(s):               64-71,192-199

          NUMA node9 CPU(s):               72-79,200-207

          NUMA node10 CPU(s):              80-87,208-215

          NUMA node11 CPU(s):              88-95,216-223

          NUMA node12 CPU(s):              96-103,224-231

          NUMA node13 CPU(s):              104-111,232-239

          NUMA node14 CPU(s):              112-119,240-247

          NUMA node15 CPU(s):              120-127,248-254

          Vulnerability Itlb multihit:     Not affected

          Vulnerability L1tf:              Not affected

          Vulnerability Mds:               Not affected

          Vulnerability Meltdown:          Not affected

          Vulnerability Mmio stale data:   Not affected

          Vulnerability Retbleed:          Not affected

          Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled
          via prctl and seccomp

          Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and
          __user pointer sanitization

          Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional,
          IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected

          Vulnerability Srbds:             Not affected

          Vulnerability Tsx async abort:   Not affected


          Versions of relevant libraries:

          [pip3] numpy==1.24.1

          [pip3] torch==2.4.0

          [pip3] torchaudio==2.0.2+cu118

          [pip3] torchvision==0.19.0

          [pip3] triton==3.0.0

          [conda] Could not collect'
        transformers_version: 4.44.1
---
### Needle in a Haystack Evaluation Heatmap

![Needle in a Haystack Evaluation Heatmap EN](./niah_heatmap_en.png)

![Needle in a Haystack Evaluation Heatmap DE](./niah_heatmap_de.png)


# Model Card for Mistral-Nemo-Instruct-2407

The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.

For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).

## Key features
- Released under the **Apache 2 License**
- Pre-trained and instructed versions
- Trained with a **128k context window**
- Trained on a large proportion of **multilingual and code data**
- Drop-in replacement of Mistral 7B

## Model Architecture
Mistral Nemo is a transformer model, with the following architecture choices:
- **Layers:** 40
- **Dim:** 5,120
- **Head dim:** 128
- **Hidden dim:** 14,336
- **Activation Function:** SwiGLU
- **Number of heads:** 32
- **Number of kv-heads:** 8 (GQA)
- **Vocabulary size:** 2**17 ~= 128k
- **Rotary embeddings (theta = 1M)**

## Metrics

### Main Benchmarks

| Benchmark | Score |
| --- | --- |
| HellaSwag (0-shot) | 83.5% |
| Winogrande (0-shot) | 76.8% |
| OpenBookQA (0-shot) | 60.6% |
| CommonSenseQA (0-shot) | 70.4% |
| TruthfulQA (0-shot) | 50.3% |
| MMLU (5-shot) | 68.0% |
| TriviaQA (5-shot) | 73.8% |
| NaturalQuestions (5-shot) | 31.2% |

### Multilingual Benchmarks (MMLU)

| Language | Score |
| --- | --- |
| French | 62.3% |
| German | 62.7% |
| Spanish | 64.6% |
| Italian | 61.3% |
| Portuguese | 63.3% |
| Russian | 59.2% |
| Chinese | 59.0% |
| Japanese | 59.0% |

## Usage

The model can be used with three different frameworks

- [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
- [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)

### Mistral Inference

#### Install

It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.

```
pip install mistral_inference
```

#### Download

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

#### Chat

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using

```
mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
```

*E.g.* Try out something like:
```
How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
```

#### Instruct following

```py
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)

prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."

completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)
```

#### Function calling

```py
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)
```

### Transformers

> [!IMPORTANT]
> NOTE: Until a new release has been made, you need to install transformers from source:
> ```sh
> pip install git+https://github.com/huggingface/transformers.git
> ```

If you want to use Hugging Face `transformers` to generate text, you can do something like this.

```py
from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407",max_new_tokens=128)
chatbot(messages)
```

## Function calling with `transformers`

To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the 
[function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
in the `transformers` docs for more information.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "mistralai/Mistral-Nemo-Instruct-2407"
tokenizer = AutoTokenizer.from_pretrained(model_id)

def get_current_weather(location: str, format: str):
    """
    Get the current weather

    Args:
        location: The city and state, e.g. San Francisco, CA
        format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
    """
    pass

conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
tools = [get_current_weather]

# format and tokenize the tool use prompt 
inputs = tokenizer.apply_chat_template(
            conversation,
            tools=tools,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
)

model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")

inputs.to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1000)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling), 
and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
exactly 9 alphanumeric characters.

> [!TIP]
> Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.

## Limitations

The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. 
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall