|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- facebook |
|
- meta |
|
- pytorch |
|
- llama |
|
- llama-2 |
|
base_model: DavidLanz/Llama3-tw-8B-Instruct |
|
model_name: Llama 3 8B Instruct |
|
inference: false |
|
model_creator: Meta Llama 3 |
|
model_type: llama |
|
pipeline_tag: text-generation |
|
quantized_by: QLoRA |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This PEFT model is designed for predicting the prices of these five Taiwan stocks: |
|
|
|
| 證券代號 | 證券名稱 | |
|
|---------|--------| |
|
| 3661 | 世芯-KY | |
|
| 2330 | 台積電 | |
|
| 3017 | 奇鋐 | |
|
| 2618 | 長榮航 | |
|
| 2317 | 鴻海 | |
|
|
|
Disclaimer: This model is for a time series problem on LLM performance, and it's not for investment advice; any prediction results are not a basis for investment reference. |
|
|
|
## Model Details |
|
|
|
The training data source is from the [臺灣證券交易所 / Taiwan Stock Exchange (TWSE)](https://www.twse.com.tw/), covering the period from January 1, 2019, to July 1, 2024 (5 years). |
|
|
|
### Model Description |
|
|
|
This repo contains QLoRA format model files for [Meta's Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). |
|
|
|
## Uses |
|
|
|
```python |
|
import torch |
|
from peft import LoraConfig, PeftModel |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
HfArgumentParser, |
|
TrainingArguments, |
|
TextStreamer, |
|
pipeline, |
|
logging, |
|
) |
|
|
|
device_map = {"": 0} |
|
use_4bit = True |
|
bnb_4bit_compute_dtype = "float16" |
|
bnb_4bit_quant_type = "nf4" |
|
use_nested_quant = False |
|
compute_dtype = getattr(torch, bnb_4bit_compute_dtype) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=use_4bit, |
|
bnb_4bit_quant_type=bnb_4bit_quant_type, |
|
bnb_4bit_compute_dtype=compute_dtype, |
|
bnb_4bit_use_double_quant=use_nested_quant, |
|
) |
|
|
|
based_model_path = "DavidLanz/Llama3-tw-8B-Instruct" |
|
adapter_path = "DavidLanz/llama3_8b_taiwan_stock_qlora" |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
based_model_path, |
|
low_cpu_mem_usage=True, |
|
return_dict=True, |
|
quantization_config=bnb_config, |
|
torch_dtype=torch.float16, |
|
device_map=device_map, |
|
) |
|
model = PeftModel.from_pretrained(base_model, adapter_path) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(based_model_path, trust_remote_code=True) |
|
|
|
import torch |
|
from transformers import pipeline, TextStreamer |
|
|
|
text_gen_pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "你是一位專業的台灣股市交易分析師", |
|
}, |
|
{"role": "user", "content": "鴻海上週五的表現,開盤價是211.00,當日最高價是217.50,當日最低價是211.00,收盤價是212.00,與前一天相比下跌了5.50,成交股數為174,076,905,交易金額為37,127,696,834。請預測今天的收盤價?"}, |
|
] |
|
|
|
prompt = text_gen_pipeline.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
terminators = [ |
|
text_gen_pipeline.tokenizer.eos_token_id, |
|
text_gen_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = text_gen_pipeline( |
|
prompt, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
print(outputs[0]["generated_text"][len(prompt):]) |
|
``` |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |