SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_lg
- SetFitABSA Aspect Model: Davide1999/setfit-absa-paraphrase-mpnet-base-v2-restaurants-aspect
- SetFitABSA Polarity Model: Davide1999/setfit-absa-paraphrase-mpnet-base-v2-restaurants-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Davide1999/setfit-absa-paraphrase-mpnet-base-v2-restaurants-aspect",
"Davide1999/setfit-absa-paraphrase-mpnet-base-v2-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 17.9296 | 37 |
Label | Training Sample Count |
---|---|
no aspect | 71 |
aspect | 128 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.3344 | - |
0.0370 | 50 | 0.2609 | - |
0.0740 | 100 | 0.1838 | - |
0.1109 | 150 | 0.0581 | - |
0.1479 | 200 | 0.0028 | - |
0.1849 | 250 | 0.0005 | - |
0.2219 | 300 | 0.0005 | - |
0.2589 | 350 | 0.0005 | - |
0.2959 | 400 | 0.0002 | - |
0.3328 | 450 | 0.0003 | - |
0.3698 | 500 | 0.0001 | - |
0.4068 | 550 | 0.0001 | - |
0.4438 | 600 | 0.0001 | - |
0.4808 | 650 | 0.0001 | - |
0.5178 | 700 | 0.0001 | - |
0.5547 | 750 | 0.0001 | - |
0.5917 | 800 | 0.0001 | - |
0.6287 | 850 | 0.0002 | - |
0.6657 | 900 | 0.0001 | - |
0.7027 | 950 | 0.0001 | - |
0.7396 | 1000 | 0.0001 | - |
0.7766 | 1050 | 0.0 | - |
0.8136 | 1100 | 0.0001 | - |
0.8506 | 1150 | 0.0001 | - |
0.8876 | 1200 | 0.0001 | - |
0.9246 | 1250 | 0.0001 | - |
0.9615 | 1300 | 0.0001 | - |
0.9985 | 1350 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 9
Inference API (serverless) has been turned off for this model.