|
Hugging Face's logo |
|
--- |
|
language: sw |
|
datasets: |
|
|
|
--- |
|
# xlm-roberta-base-finetuned-swahili |
|
## Model description |
|
**xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. |
|
|
|
Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus. |
|
## Intended uses & limitations |
|
#### How to use |
|
You can use this model with Transformers *pipeline* for masked token prediction. |
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili') |
|
>>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko <mask> kwamba hakuna uhalifu ulitendwa") |
|
|
|
[{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa', |
|
'score': 0.5077782273292542, |
|
'token': 190096, |
|
'token_str': 'Ufaransa'}, |
|
{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', |
|
'score': 0.3657738268375397, |
|
'token': 7270, |
|
'token_str': 'Paris'}, |
|
{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa', |
|
'score': 0.01592041552066803, |
|
'token': 176392, |
|
'token_str': 'Gabon'}, |
|
{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', |
|
'score': 0.010881908237934113, |
|
'token': 9942, |
|
'token_str': 'France'}, |
|
{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa', |
|
'score': 0.009554869495332241, |
|
'token': 185918, |
|
'token_str': 'Marseille'}] |
|
|
|
|
|
``` |
|
#### Limitations and bias |
|
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. |
|
## Training data |
|
This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) |
|
|
|
## Training procedure |
|
This model was trained on a single NVIDIA V100 GPU |
|
|
|
## Eval results on Test set (F-score, average over 5 runs) |
|
Dataset| XLM-R F1 | sw_roberta F1 |
|
-|-|- |
|
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.55 | 89.46 |
|
|
|
### BibTeX entry and citation info |
|
By David Adelani |
|
``` |
|
|
|
``` |
|
|
|
|
|
|